Creating Scalable AGI: the Open General Intelligence Framework
- URL: http://arxiv.org/abs/2411.15832v1
- Date: Sun, 24 Nov 2024 13:17:53 GMT
- Title: Creating Scalable AGI: the Open General Intelligence Framework
- Authors: Daniel A. Dollinger, Michael Singleton,
- Abstract summary: The architecture, OGI (Open General Intelligence), utilizes a dynamic processing system to control and delegate across specialized artificial intelligence modules.
It is intended to be used as a reference design for intelligent systems, providing human-like cognitive flexibility for generalized artificial intelligence across various real-world applications.
- Score: 0.0
- License:
- Abstract: This paper introduces a novel general artificial intelligence systems architecture that provides generalized flexibility and solves current scalability issues plaguing the field. The architecture, OGI (Open General Intelligence), utilizes a dynamic processing system to control and delegate across specialized artificial intelligence modules. It is intended to be used as a reference design for intelligent systems, providing human-like cognitive flexibility for generalized artificial intelligence across various real-world applications.
Related papers
- Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G [58.440115433585824]
Building future wireless systems that support services like digital twins (DTs) is challenging to achieve through advances to conventional technologies like meta-surfaces.
While artificial intelligence (AI)-native networks promise to overcome some limitations of wireless technologies, developments still rely on AI tools like neural networks.
This paper revisits the concept of AI-native wireless systems, equipping them with the common sense necessary to transform them into artificial general intelligence (AGI)-native systems.
arXiv Detail & Related papers (2024-04-29T04:51:05Z) - Towards a general framework for improving the performance of classifiers using XAI methods [0.0]
This paper proposes a framework for automatically improving the performance of pre-trained Deep Learning (DL) classifiers using XAI methods.
We will call auto-encoder-based and encoder-decoder-based, and discuss their key aspects.
arXiv Detail & Related papers (2024-03-15T15:04:20Z) - Large Language Models Empowered Autonomous Edge AI for Connected
Intelligence [51.269276328087855]
Edge artificial intelligence (Edge AI) is a promising solution to achieve connected intelligence.
This article presents a vision of autonomous edge AI systems that automatically organize, adapt, and optimize themselves to meet users' diverse requirements.
arXiv Detail & Related papers (2023-07-06T05:16:55Z) - A Graphical Modeling Language for Artificial Intelligence Applications
in Automation Systems [69.50862982117127]
An interdisciplinary graphical modeling language that enables the modeling of an AI application as an overall system comprehensible to all disciplines does not yet exist.
This paper presents a graphical modeling language that enables consistent and understandable modeling of AI applications in automation systems at system level.
arXiv Detail & Related papers (2023-06-20T12:06:41Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
Human Intelligence (HI) excels at combining basic skills to solve complex tasks.
This capability is vital for Artificial Intelligence (AI) and should be embedded in comprehensive AI Agents.
We introduce OpenAGI, an open-source platform designed for solving multi-step, real-world tasks.
arXiv Detail & Related papers (2023-04-10T03:55:35Z) - Core and Periphery as Closed-System Precepts for Engineering General
Intelligence [62.997667081978825]
It is unclear if an AI system's inputs will be independent of its outputs, and, therefore, if AI systems can be treated as traditional components.
This paper posits that engineering general intelligence requires new general systems precepts, termed the core and periphery.
arXiv Detail & Related papers (2022-08-04T18:20:25Z) - Designing an AI-Driven Talent Intelligence Solution: Exploring Big Data
to extend the TOE Framework [0.0]
This study aims to identify the new requirements for developing AI-oriented artifacts to address talent management issues.
A design science method is adopted for conducting the experimental study with structured machine learning techniques.
arXiv Detail & Related papers (2022-07-25T10:42:50Z) - MRKL Systems: A modular, neuro-symbolic architecture that combines large
language models, external knowledge sources and discrete reasoning [50.40151403246205]
Huge language models (LMs) have ushered in a new era for AI, serving as a gateway to natural-language-based knowledge tasks.
We define a flexible architecture with multiple neural models, complemented by discrete knowledge and reasoning modules.
We describe this neuro-symbolic architecture, dubbed the Modular Reasoning, Knowledge and Language (MRKL) system.
arXiv Detail & Related papers (2022-05-01T11:01:28Z) - The Why, What and How of Artificial General Intelligence Chip
Development [0.0]
The intelligent sensing, automation, and edge computing applications have been the market drivers for AI chips.
The generalisation, performance, robustness, and scalability of the AI chip solutions are compared with human-like intelligence abilities.
arXiv Detail & Related papers (2020-12-08T02:36:04Z) - AI from concrete to abstract: demystifying artificial intelligence to
the general public [0.0]
This article presents a new methodology, AI from concrete to abstract (AIcon2abs)
The main strategy adopted by is to promote a demystification of artificial intelligence.
The simplicity of the WiSARD weightless artificial neural network model enables easy visualization and understanding of training and classification tasks.
arXiv Detail & Related papers (2020-06-07T01:14:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.