A Functional Software Reference Architecture for LLM-Integrated Systems
- URL: http://arxiv.org/abs/2501.12904v1
- Date: Wed, 22 Jan 2025 14:30:40 GMT
- Title: A Functional Software Reference Architecture for LLM-Integrated Systems
- Authors: Alessio Bucaioni, Martin Weyssow, Junda He, Yunbo Lyu, David Lo,
- Abstract summary: Integration of large language models into software systems is transforming capabilities such as natural language understanding, decision-making, and autonomous task execution.
The absence of a commonly accepted software reference architecture hinders systematic reasoning about their design and quality attributes.
We describe our textitemerging results for a preliminary functional reference architecture as a conceptual framework to address these challenges.
- Score: 8.68898878009242
- License:
- Abstract: The integration of large language models into software systems is transforming capabilities such as natural language understanding, decision-making, and autonomous task execution. However, the absence of a commonly accepted software reference architecture hinders systematic reasoning about their design and quality attributes. This gap makes it challenging to address critical concerns like privacy, security, modularity, and interoperability, which are increasingly important as these systems grow in complexity and societal impact. In this paper, we describe our \textit{emerging} results for a preliminary functional reference architecture as a conceptual framework to address these challenges and guide the design, evaluation, and evolution of large language model-integrated systems. We identify key architectural concerns for these systems, informed by current research and practice. We then evaluate how the architecture addresses these concerns and validate its applicability using three open-source large language model-integrated systems in computer vision, text processing, and coding.
Related papers
- A quantitative framework for evaluating architectural patterns in ML systems [49.1574468325115]
This study proposes a framework for quantitative assessment of architectural patterns in ML systems.
We focus on scalability and performance metrics for cost-effective CPU-based inference.
arXiv Detail & Related papers (2025-01-20T15:30:09Z) - Creating Scalable AGI: the Open General Intelligence Framework [0.0]
Open General Intelligence (OGI) is a novel systems architecture that serves as a macro design reference for Artificial General Intelligence (AGI)
OGI adopts a modular approach to the design of intelligent systems, based on the premise that cognition must occur across multiple specialized modules that can seamlessly operate as a single system.
The OGI framework aims to overcome the challenges observed in today's intelligent systems, paving the way for more holistic and context-aware problem-solving capabilities.
arXiv Detail & Related papers (2024-11-24T13:17:53Z) - Architectural Patterns for Designing Quantum Artificial Intelligence Systems [25.42535682546052]
Utilising quantum computing technology to enhance artificial intelligence systems is expected to improve training and inference times, increase robustness against noise and adversarial attacks, and reduce the number of parameters without compromising accuracy.
However, moving beyond proof-of-concept or simulations to develop practical applications of these systems faces significant challenges due to the limitations of quantum hardware and the underdeveloped knowledge base in software engineering for such systems.
We have conducted a systematic mapping study to identify the challenges and solutions associated with the software architecture of quantum-enhanced artificial intelligence systems.
arXiv Detail & Related papers (2024-11-14T05:09:07Z) - A Survey: Collaborative Hardware and Software Design in the Era of Large Language Models [16.250856588632637]
The rapid development of large language models (LLMs) has significantly transformed the field of artificial intelligence.
These models are increasingly integrated into diverse applications, impacting both research and industry.
This paper surveys hardware and software co-design approaches specifically tailored to address the unique characteristics and constraints of large language models.
arXiv Detail & Related papers (2024-10-08T21:46:52Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
We present a novel interactive application aimed towards understanding the internal mechanisms of large vision-language models.
Our interface is designed to enhance the interpretability of the image patches, which are instrumental in generating an answer.
We present a case study of how our application can aid in understanding failure mechanisms in a popular large multi-modal model: LLaVA.
arXiv Detail & Related papers (2024-04-03T23:57:34Z) - Building Trust in Conversational AI: A Comprehensive Review and Solution
Architecture for Explainable, Privacy-Aware Systems using LLMs and Knowledge
Graph [0.33554367023486936]
We introduce a comprehensive tool that provides an in-depth review of over 150 Large Language Models (LLMs)
Building on this foundation, we propose a novel functional architecture that seamlessly integrates the structured dynamics of Knowledge Graphs with the linguistic capabilities of LLMs.
Our architecture adeptly blends linguistic sophistication with factual rigour and further strengthens data security through Role-Based Access Control.
arXiv Detail & Related papers (2023-08-13T22:47:51Z) - Enhancing Architecture Frameworks by Including Modern Stakeholders and their Views/Viewpoints [48.87872564630711]
The stakeholders with data science and Machine Learning related concerns, such as data scientists and data engineers, are yet to be included in existing architecture frameworks.
We surveyed 61 subject matter experts from over 25 organizations in 10 countries.
arXiv Detail & Related papers (2023-08-09T21:54:34Z) - MRKL Systems: A modular, neuro-symbolic architecture that combines large
language models, external knowledge sources and discrete reasoning [50.40151403246205]
Huge language models (LMs) have ushered in a new era for AI, serving as a gateway to natural-language-based knowledge tasks.
We define a flexible architecture with multiple neural models, complemented by discrete knowledge and reasoning modules.
We describe this neuro-symbolic architecture, dubbed the Modular Reasoning, Knowledge and Language (MRKL) system.
arXiv Detail & Related papers (2022-05-01T11:01:28Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - Towards an Interface Description Template for AI-enabled Systems [77.34726150561087]
Reuse is a common system architecture approach that seeks to instantiate a system architecture with existing components.
There is currently no framework that guides the selection of necessary information to assess their portability to operate in a system different than the one for which the component was originally purposed.
We present ongoing work on establishing an interface description template that captures the main information of an AI-enabled component.
arXiv Detail & Related papers (2020-07-13T20:30:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.