Creating Scalable AGI: the Open General Intelligence Framework
- URL: http://arxiv.org/abs/2411.15832v2
- Date: Wed, 27 Nov 2024 19:25:31 GMT
- Title: Creating Scalable AGI: the Open General Intelligence Framework
- Authors: Daniel A. Dollinger, Michael Singleton,
- Abstract summary: Open General Intelligence (OGI) is a novel systems architecture that serves as a macro design reference for Artificial General Intelligence (AGI)<n>OGI adopts a modular approach to the design of intelligent systems, based on the premise that cognition must occur across multiple specialized modules that can seamlessly operate as a single system.<n>The OGI framework aims to overcome the challenges observed in today's intelligent systems, paving the way for more holistic and context-aware problem-solving capabilities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Artificial Intelligence (AI), particularly with Large Language Models (LLMs), have led to significant progress in narrow tasks such as image classification, language translation, coding, and writing. However, these models face limitations in reliability and scalability due to their siloed architectures, which are designed to handle only one data modality (data type) at a time. This single modal approach hinders their ability to integrate the complex set of data points required for real-world challenges and problem-solving tasks like medical diagnosis, quality assurance, equipment troubleshooting, and financial decision-making. Addressing these real-world challenges requires a more capable Artificial General Intelligence (AGI) system. Our primary contribution is the development of the Open General Intelligence (OGI) framework, a novel systems architecture that serves as a macro design reference for AGI. The OGI framework adopts a modular approach to the design of intelligent systems, based on the premise that cognition must occur across multiple specialized modules that can seamlessly operate as a single system. OGI integrates these modules using a dynamic processing system and a fabric interconnect, enabling real-time adaptability, multi-modal integration, and scalable processing. The OGI framework consists of three key components: (1) Overall Macro Design Guidance that directs operational design and processing, (2) a Dynamic Processing System that controls routing, primary goals, instructions, and weighting, and (3) Framework Areas, a set of specialized modules that operate cohesively to form a unified cognitive system. By incorporating known principles from human cognition into AI systems, the OGI framework aims to overcome the challenges observed in today's intelligent systems, paving the way for more holistic and context-aware problem-solving capabilities.
Related papers
- Adaptive Orchestration of Modular Generative Information Access Systems [59.102816309859584]
We argue that the architecture of future modular generative information access systems will not just assemble powerful components, but enable a self-organizing system.
This perspective urges the IR community to rethink modular system designs for developing adaptive, self-optimizing, and future-ready architectures.
arXiv Detail & Related papers (2025-04-24T11:35:43Z) - A Survey on (M)LLM-Based GUI Agents [62.57899977018417]
Graphical User Interface (GUI) Agents have emerged as a transformative paradigm in human-computer interaction.
Recent advances in large language models and multimodal learning have revolutionized GUI automation across desktop, mobile, and web platforms.
This survey identifies key technical challenges, including accurate element localization, effective knowledge retrieval, long-horizon planning, and safety-aware execution control.
arXiv Detail & Related papers (2025-03-27T17:58:31Z) - A Functional Software Reference Architecture for LLM-Integrated Systems [8.68898878009242]
Integration of large language models into software systems is transforming capabilities such as natural language understanding, decision-making, and autonomous task execution.
The absence of a commonly accepted software reference architecture hinders systematic reasoning about their design and quality attributes.
We describe our textitemerging results for a preliminary functional reference architecture as a conceptual framework to address these challenges.
arXiv Detail & Related papers (2025-01-22T14:30:40Z) - A quantitative framework for evaluating architectural patterns in ML systems [49.1574468325115]
This study proposes a framework for quantitative assessment of architectural patterns in ML systems.
We focus on scalability and performance metrics for cost-effective CPU-based inference.
arXiv Detail & Related papers (2025-01-20T15:30:09Z) - Collaborative AI in Sentiment Analysis: System Architecture, Data Prediction and Deployment Strategies [3.3374611485861116]
Large language model (LLM) based artificial intelligence technologies have been a game-changer, particularly in sentiment analysis.
However, integrating diverse AI models for processing complex multimodal data and the associated high costs of feature extraction presents significant challenges.
This study introduces a collaborative AI framework designed to efficiently distribute and resolve tasks across various AI systems.
arXiv Detail & Related papers (2024-10-17T06:14:34Z) - Towards Building Specialized Generalist AI with System 1 and System 2 Fusion [14.098921452341338]
Specialized Generalist Artificial Intelligence (SGAI or simply SGI) is a crucial milestone toward Artificial General Intelligence (AGI)
We categorize SGI into three stages based on the level of mastery over professional skills and generality performance.
We propose a conceptual framework for developing SGI that integrates the strengths of Systems 1 and 2 cognitive processing.
arXiv Detail & Related papers (2024-07-11T16:23:16Z) - Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G [58.440115433585824]
Building future wireless systems that support services like digital twins (DTs) is challenging to achieve through advances to conventional technologies like meta-surfaces.
While artificial intelligence (AI)-native networks promise to overcome some limitations of wireless technologies, developments still rely on AI tools like neural networks.
This paper revisits the concept of AI-native wireless systems, equipping them with the common sense necessary to transform them into artificial general intelligence (AGI)-native systems.
arXiv Detail & Related papers (2024-04-29T04:51:05Z) - Towards a general framework for improving the performance of classifiers using XAI methods [0.0]
This paper proposes a framework for automatically improving the performance of pre-trained Deep Learning (DL) classifiers using XAI methods.
We will call auto-encoder-based and encoder-decoder-based, and discuss their key aspects.
arXiv Detail & Related papers (2024-03-15T15:04:20Z) - Levels of AGI for Operationalizing Progress on the Path to AGI [64.59151650272477]
We propose a framework for classifying the capabilities and behavior of Artificial General Intelligence (AGI) models and their precursors.
This framework introduces levels of AGI performance, generality, and autonomy, providing a common language to compare models, assess risks, and measure progress along the path to AGI.
arXiv Detail & Related papers (2023-11-04T17:44:58Z) - 1 From the Pursuit of Universal AGI Architecture to Systematic Approach to Heterogenous AGI: Addressing Alignment, Energy, & AGI Grand Challenges [3.5897534810405403]
AI faces a trifecta of grand challenges: the Energy Wall, the Alignment Problem and the Leap from Narrow AI to AGI.
The leap from AI to AGI requires multiple functional subsystems operating in a balanced manner, which requires a system architecture.
This paper asserts that artificial intelligence can be realized through a multiplicity of design-specific pathways, rather than a singular, overarching AGI architecture.
arXiv Detail & Related papers (2023-10-23T18:20:54Z) - Large Language Models Empowered Autonomous Edge AI for Connected
Intelligence [51.269276328087855]
Edge artificial intelligence (Edge AI) is a promising solution to achieve connected intelligence.
This article presents a vision of autonomous edge AI systems that automatically organize, adapt, and optimize themselves to meet users' diverse requirements.
arXiv Detail & Related papers (2023-07-06T05:16:55Z) - A Graphical Modeling Language for Artificial Intelligence Applications
in Automation Systems [69.50862982117127]
An interdisciplinary graphical modeling language that enables the modeling of an AI application as an overall system comprehensible to all disciplines does not yet exist.
This paper presents a graphical modeling language that enables consistent and understandable modeling of AI applications in automation systems at system level.
arXiv Detail & Related papers (2023-06-20T12:06:41Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
Human Intelligence (HI) excels at combining basic skills to solve complex tasks.
This capability is vital for Artificial Intelligence (AI) and should be embedded in comprehensive AI Agents.
We introduce OpenAGI, an open-source platform designed for solving multi-step, real-world tasks.
arXiv Detail & Related papers (2023-04-10T03:55:35Z) - Core and Periphery as Closed-System Precepts for Engineering General
Intelligence [62.997667081978825]
It is unclear if an AI system's inputs will be independent of its outputs, and, therefore, if AI systems can be treated as traditional components.
This paper posits that engineering general intelligence requires new general systems precepts, termed the core and periphery.
arXiv Detail & Related papers (2022-08-04T18:20:25Z) - Designing an AI-Driven Talent Intelligence Solution: Exploring Big Data
to extend the TOE Framework [0.0]
This study aims to identify the new requirements for developing AI-oriented artifacts to address talent management issues.
A design science method is adopted for conducting the experimental study with structured machine learning techniques.
arXiv Detail & Related papers (2022-07-25T10:42:50Z) - MRKL Systems: A modular, neuro-symbolic architecture that combines large
language models, external knowledge sources and discrete reasoning [50.40151403246205]
Huge language models (LMs) have ushered in a new era for AI, serving as a gateway to natural-language-based knowledge tasks.
We define a flexible architecture with multiple neural models, complemented by discrete knowledge and reasoning modules.
We describe this neuro-symbolic architecture, dubbed the Modular Reasoning, Knowledge and Language (MRKL) system.
arXiv Detail & Related papers (2022-05-01T11:01:28Z) - Proceedings of the Robust Artificial Intelligence System Assurance
(RAISA) Workshop 2022 [0.0]
The RAISA workshop will focus on research, development and application of robust artificial intelligence (AI) and machine learning (ML) systems.
Rather than studying robustness with respect to particular ML algorithms, our approach will be to explore robustness assurance at the system architecture level.
arXiv Detail & Related papers (2022-02-10T01:15:50Z) - The Why, What and How of Artificial General Intelligence Chip
Development [0.0]
The intelligent sensing, automation, and edge computing applications have been the market drivers for AI chips.
The generalisation, performance, robustness, and scalability of the AI chip solutions are compared with human-like intelligence abilities.
arXiv Detail & Related papers (2020-12-08T02:36:04Z) - Towards an Interface Description Template for AI-enabled Systems [77.34726150561087]
Reuse is a common system architecture approach that seeks to instantiate a system architecture with existing components.
There is currently no framework that guides the selection of necessary information to assess their portability to operate in a system different than the one for which the component was originally purposed.
We present ongoing work on establishing an interface description template that captures the main information of an AI-enabled component.
arXiv Detail & Related papers (2020-07-13T20:30:26Z) - AI from concrete to abstract: demystifying artificial intelligence to
the general public [0.0]
This article presents a new methodology, AI from concrete to abstract (AIcon2abs)
The main strategy adopted by is to promote a demystification of artificial intelligence.
The simplicity of the WiSARD weightless artificial neural network model enables easy visualization and understanding of training and classification tasks.
arXiv Detail & Related papers (2020-06-07T01:14:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.