Soft-TransFormers for Continual Learning
- URL: http://arxiv.org/abs/2411.16073v1
- Date: Mon, 25 Nov 2024 03:52:47 GMT
- Title: Soft-TransFormers for Continual Learning
- Authors: Haeyong Kang, Chang D. Yoo,
- Abstract summary: We propose a novel fully fine-tuned continual learning (CL) method referred to as Soft-TransFormers (Soft-TF)
Soft-TF sequentially learns and selects an optimal soft-network or subnetwork for each task.
In inference, the identified task-adaptive network of Soft-TF masks the parameters of the pre-trained network.
- Score: 27.95463327680678
- License:
- Abstract: Inspired by Well-initialized Lottery Ticket Hypothesis (WLTH), which provides suboptimal fine-tuning solutions, we propose a novel fully fine-tuned continual learning (CL) method referred to as Soft-TransFormers (Soft-TF). Soft-TF sequentially learns and selects an optimal soft-network or subnetwork for each task. During sequential training in CL, Soft-TF jointly optimizes the weights of sparse layers to obtain task-adaptive soft (real-valued) networks or subnetworks (binary masks), while keeping the well-pre-trained layer parameters frozen. In inference, the identified task-adaptive network of Soft-TF masks the parameters of the pre-trained network, mapping to an optimal solution for each task and minimizing Catastrophic Forgetting (CF) - the soft-masking preserves the knowledge of the pre-trained network. Extensive experiments on Vision Transformer (ViT) and CLIP demonstrate the effectiveness of Soft-TF, achieving state-of-the-art performance across various CL scenarios, including Class-Incremental Learning (CIL) and Task-Incremental Learning (TIL), supported by convergence theory.
Related papers
- SLCA++: Unleash the Power of Sequential Fine-tuning for Continual Learning with Pre-training [68.7896349660824]
We present an in-depth analysis of the progressive overfitting problem from the lens of Seq FT.
Considering that the overly fast representation learning and the biased classification layer constitute this particular problem, we introduce the advanced Slow Learner with Alignment (S++) framework.
Our approach involves a Slow Learner to selectively reduce the learning rate of backbone parameters, and a Alignment to align the disjoint classification layers in a post-hoc fashion.
arXiv Detail & Related papers (2024-08-15T17:50:07Z) - Continual Learning: Forget-free Winning Subnetworks for Video Representations [75.40220771931132]
Winning Subnetwork (WSN) in terms of task performance is considered for various continual learning tasks.
It leverages pre-existing weights from dense networks to achieve efficient learning in Task Incremental Learning (TIL) and Task-agnostic Incremental Learning (TaIL) scenarios.
The use of Fourier Subneural Operator (FSO) within WSN is considered for Video Incremental Learning (VIL)
arXiv Detail & Related papers (2023-12-19T09:11:49Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
We study optimization guarantees, i.e., achieving near-zero training loss with the increase in the number of learning epochs.
We show that the threshold on the number of training samples increases with the increase in the network width.
arXiv Detail & Related papers (2023-09-12T13:03:47Z) - ConvBLS: An Effective and Efficient Incremental Convolutional Broad
Learning System for Image Classification [63.49762079000726]
We propose a convolutional broad learning system (ConvBLS) based on the spherical K-means (SKM) algorithm and two-stage multi-scale (TSMS) feature fusion.
Our proposed ConvBLS method is unprecedentedly efficient and effective.
arXiv Detail & Related papers (2023-04-01T04:16:12Z) - Forget-free Continual Learning with Soft-Winning SubNetworks [67.0373924836107]
We investigate two proposed continual learning methods which sequentially learn and select adaptive binary- (WSN) and non-binary Soft-Subnetworks (SoftNet) for each task.
WSN and SoftNet jointly learn the regularized model weights and task-adaptive non-binary masks ofworks associated with each task.
In Task Incremental Learning (TIL), binary masks spawned per winning ticket are encoded into one N-bit binary digit mask, then compressed using Huffman coding for a sub-linear increase in network capacity to the number of tasks.
arXiv Detail & Related papers (2023-03-27T07:53:23Z) - On the Soft-Subnetwork for Few-shot Class Incremental Learning [67.0373924836107]
We propose a few-shot class incremental learning (FSCIL) method referred to as emphSoft-SubNetworks (SoftNet).
Our objective is to learn a sequence of sessions incrementally, where each session only includes a few training instances per class while preserving the knowledge of the previously learned ones.
We provide comprehensive empirical validations demonstrating that our SoftNet effectively tackles the few-shot incremental learning problem by surpassing the performance of state-of-the-art baselines over benchmark datasets.
arXiv Detail & Related papers (2022-09-15T04:54:02Z) - Regularized Adaptation for Stable and Efficient Continuous-Level
Learning on Image Processing Networks [7.730087303035803]
We propose a novel continuous-level learning framework using a Filter Transition Network (FTN)
FTN is a non-linear module that easily adapt to new levels, and is regularized to prevent undesirable side-effects.
Extensive results for various image processing indicate that the performance of FTN is stable in terms of adaptation and adaptation.
arXiv Detail & Related papers (2020-03-11T07:46:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.