The brain versus AI: World-model-based versatile circuit computation underlying diverse functions in the neocortex and cerebellum
- URL: http://arxiv.org/abs/2411.16075v1
- Date: Mon, 25 Nov 2024 04:05:43 GMT
- Title: The brain versus AI: World-model-based versatile circuit computation underlying diverse functions in the neocortex and cerebellum
- Authors: Shogo Ohmae, Keiko Ohmae,
- Abstract summary: We identify similarities and convergent evolution in the brain and AI.
We propose a new theory that integrates established neuroscience theories.
Our systematic approach, insights, and theory promise groundbreaking advances in understanding the brain.
- Score: 0.0
- License:
- Abstract: AI's significant recent advances using general-purpose circuit computations offer a potential window into how the neocortex and cerebellum of the brain are able to achieve a diverse range of functions across sensory, cognitive, and motor domains, despite their uniform circuit structures. However, comparing the brain and AI is challenging unless clear similarities exist, and past reviews have been limited to comparison of brain-inspired vision AI and the visual neocortex. Here, to enable comparisons across diverse functional domains, we subdivide circuit computation into three elements -- circuit structure, input/outputs, and the learning algorithm -- and evaluate the similarities for each element. With this novel approach, we identify wide-ranging similarities and convergent evolution in the brain and AI, providing new insights into key concepts in neuroscience. Furthermore, inspired by processing mechanisms of AI, we propose a new theory that integrates established neuroscience theories, particularly the theories of internal models and the mirror neuron system. Both the neocortex and cerebellum predict future world events from past information and learn from prediction errors, thereby acquiring models of the world. These models enable three core processes: (1) Prediction -- generating future information, (2) Understanding -- interpreting the external world via compressed and abstracted sensory information, and (3) Generation -- repurposing the future-information generation mechanism to produce other types of outputs. The universal application of these processes underlies the ability of the neocortex and cerebellum to accomplish diverse functions with uniform circuits. Our systematic approach, insights, and theory promise groundbreaking advances in understanding the brain.
Related papers
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Towards Reverse-Engineering the Brain: Brain-Derived Neuromorphic Computing Approach with Photonic, Electronic, and Ionic Dynamicity in 3D integrated circuits [2.649646793770068]
The human brain has immense learning capabilities at extreme energy efficiencies and scale that no artificial system has been able to match.
This paper argues the possibility of reverse-engineering the brain through architecting a prototype of a brain-derived neuromorphic computing system.
arXiv Detail & Related papers (2024-03-28T05:24:04Z) - A Review of Findings from Neuroscience and Cognitive Psychology as
Possible Inspiration for the Path to Artificial General Intelligence [0.0]
This review aims to contribute to the quest for artificial general intelligence by examining neuroscience and cognitive psychology methods.
Despite the impressive advancements achieved by deep learning models, they still have shortcomings in abstract reasoning and causal understanding.
arXiv Detail & Related papers (2024-01-03T09:46:36Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
Modern AI systems, based on von Neumann architecture and classical neural networks, have a number of fundamental limitations in comparison with the brain.
This article discusses such limitations and the ways they can be mitigated.
It presents an overview of currently available neuromorphic AI projects in which these limitations are overcome.
arXiv Detail & Related papers (2022-05-25T20:16:05Z) - Neurocompositional computing: From the Central Paradox of Cognition to a
new generation of AI systems [120.297940190903]
Recent progress in AI has resulted from the use of limited forms of neurocompositional computing.
New, deeper forms of neurocompositional computing create AI systems that are more robust, accurate, and comprehensible.
arXiv Detail & Related papers (2022-05-02T18:00:10Z) - Spatiotemporal Patterns in Neurobiology: An Overview for Future
Artificial Intelligence [0.0]
We argue that computational models are key tools for elucidating possible functionalities that emerge from network interactions.
Here we review several classes of models including spiking neurons, integrate and fire neurons.
We hope these studies will inform future developments in artificial intelligence algorithms as well as help validate our understanding of brain processes.
arXiv Detail & Related papers (2022-03-29T10:28:01Z) - Towards Understanding Human Functional Brain Development with
Explainable Artificial Intelligence: Challenges and Perspectives [6.106661781836959]
This paper aims to understand the extent to which current state-of-the-art AI techniques can inform functional brain development.
A review of which AI techniques are more likely to explain their learning based on the processes of brain development is also undertaken.
arXiv Detail & Related papers (2021-12-24T02:13:13Z) - A brain basis of dynamical intelligence for AI and computational
neuroscience [0.0]
More brain-like capacities may demand new theories, models, and methods for designing artificial learning systems.
This article was inspired by our symposium on dynamical neuroscience and machine learning at the 6th Annual US/NIH BRAIN Initiative Investigators Meeting.
arXiv Detail & Related papers (2021-05-15T19:49:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.