VideoOrion: Tokenizing Object Dynamics in Videos
- URL: http://arxiv.org/abs/2411.16156v1
- Date: Mon, 25 Nov 2024 07:32:02 GMT
- Title: VideoOrion: Tokenizing Object Dynamics in Videos
- Authors: Yicheng Feng, Yijiang Li, Wanpeng Zhang, Sipeng Zheng, Zongqing Lu,
- Abstract summary: We present VideoOrion, a Video Large Language Model (Video-LLM) that explicitly captures the key semantic information in videos.
VideoOrion employs expert vision models to extract object dynamics through a detect-segment-track pipeline.
Our method addresses the persistent challenge in Video-LLMs of efficiently compressing high-dimensional video data into semantic tokens.
- Score: 33.26917406964148
- License:
- Abstract: We present VideoOrion, a Video Large Language Model (Video-LLM) that explicitly captures the key semantic information in videos--the spatial-temporal dynamics of objects throughout the videos. VideoOrion employs expert vision models to extract object dynamics through a detect-segment-track pipeline, encoding them into a set of object tokens by aggregating spatial-temporal object features. Our method addresses the persistent challenge in Video-LLMs of efficiently compressing high-dimensional video data into semantic tokens that are comprehensible to LLMs. Compared to prior methods which resort to downsampling the original video or aggregating visual tokens using resamplers, leading to information loss and entangled semantics, VideoOrion not only offers a more natural and efficient way to derive compact, disentangled semantic representations but also enables explicit object modeling of video content with minimal computational cost. Moreover, the introduced object tokens naturally allow VideoOrion to accomplish video-based referring tasks. Experimental results show that VideoOrion can learn to make good use of the object tokens, and achieves competitive results on both general video question answering and video-based referring benchmarks.
Related papers
- One Token to Seg Them All: Language Instructed Reasoning Segmentation in Videos [41.34787907803329]
VideoLISA is a video-based multimodal large language model designed to tackle the problem of language-instructed reasoning segmentation in videos.
VideoLISA generates temporally consistent segmentation masks in videos based on language instructions.
arXiv Detail & Related papers (2024-09-29T07:47:15Z) - Rethinking Image-to-Video Adaptation: An Object-centric Perspective [61.833533295978484]
We propose a novel and efficient image-to-video adaptation strategy from the object-centric perspective.
Inspired by human perception, we integrate a proxy task of object discovery into image-to-video transfer learning.
arXiv Detail & Related papers (2024-07-09T13:58:10Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
We introduce an appearance-based refinement method that leverages temporal consistency in video streams to correct inaccurate flow-based proposals.
Our approach involves a sequence-level selection mechanism that identifies accurate flow-predicted masks as exemplars.
Its performance is evaluated on multiple video segmentation benchmarks, including DAVIS, YouTube, SegTrackv2, and FBMS-59.
arXiv Detail & Related papers (2023-12-18T18:59:51Z) - Retrieval-based Video Language Model for Efficient Long Video Question
Answering [39.474247695753725]
We introduce a retrieval-based video language model (R-VLM) for efficient and interpretable long video QA.
Specifically, given a question (query) and a long video, our model identifies and selects the most relevant $K$ video chunks.
Our experimental results validate the effectiveness of our framework for comprehending long videos.
arXiv Detail & Related papers (2023-12-08T09:48:36Z) - MeViS: A Large-scale Benchmark for Video Segmentation with Motion
Expressions [93.35942025232943]
We propose a large-scale dataset called MeViS, which contains numerous motion expressions to indicate target objects in complex environments.
The goal of our benchmark is to provide a platform that enables the development of effective language-guided video segmentation algorithms.
arXiv Detail & Related papers (2023-08-16T17:58:34Z) - Helping Hands: An Object-Aware Ego-Centric Video Recognition Model [60.350851196619296]
We introduce an object-aware decoder for improving the performance of ego-centric representations on ego-centric videos.
We show that the model can act as a drop-in replacement for an ego-awareness video model to improve performance through visual-text grounding.
arXiv Detail & Related papers (2023-08-15T17:58:11Z) - VIOLET : End-to-End Video-Language Transformers with Masked Visual-token
Modeling [88.30109041658618]
A great challenge in video-language (VidL) modeling lies in the disconnection between fixed video representations extracted from image/video understanding models and downstream VidL data.
We present VIOLET, a fully end-to-end VIdeO-LanguagE Transformer, which adopts a video transformer to explicitly model the temporal dynamics of video inputs.
arXiv Detail & Related papers (2021-11-24T18:31:20Z) - SynthRef: Generation of Synthetic Referring Expressions for Object
Segmentation [7.690965189591581]
We present and disseminate the first large-scale dataset with synthetic referring expressions for video object segmentation.
Our experiments demonstrate that by training with our synthetic referring expressions one can improve the ability of a model to generalize across different datasets.
arXiv Detail & Related papers (2021-06-08T14:28:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.