BadSFL: Backdoor Attack against Scaffold Federated Learning
- URL: http://arxiv.org/abs/2411.16167v2
- Date: Tue, 26 Nov 2024 07:00:34 GMT
- Title: BadSFL: Backdoor Attack against Scaffold Federated Learning
- Authors: Xingshuo Han, Xuanye Zhang, Xiang Lan, Haozhao Wang, Shengmin Xu, Shen Ren, Jason Zeng, Ming Wu, Michael Heinrich, Tianwei Zhang,
- Abstract summary: Federated learning (FL) enables the training of deep learning models on distributed clients to preserve data privacy.
BadSFL is a novel backdoor attack method designed for the FL framework using the scaffold aggregation algorithm in non-IID settings.
BadSFL is effective over 60 rounds in the global model and up to 3 times longer than existing baseline attacks.
- Score: 16.104941796138128
- License:
- Abstract: Federated learning (FL) enables the training of deep learning models on distributed clients to preserve data privacy. However, this learning paradigm is vulnerable to backdoor attacks, where malicious clients can upload poisoned local models to embed backdoors into the global model, leading to attacker-desired predictions. Existing backdoor attacks mainly focus on FL with independently and identically distributed (IID) scenarios, while real-world FL training data are typically non-IID. Current strategies for non-IID backdoor attacks suffer from limitations in maintaining effectiveness and durability. To address these challenges, we propose a novel backdoor attack method, BadSFL, specifically designed for the FL framework using the scaffold aggregation algorithm in non-IID settings. BadSFL leverages a Generative Adversarial Network (GAN) based on the global model to complement the training set, achieving high accuracy on both backdoor and benign samples. It utilizes a specific feature as the backdoor trigger to ensure stealthiness, and exploits the Scaffold's control variate to predict the global model's convergence direction, ensuring the backdoor's persistence. Extensive experiments on three benchmark datasets demonstrate the high effectiveness, stealthiness, and durability of BadSFL. Notably, our attack remains effective over 60 rounds in the global model and up to 3 times longer than existing baseline attacks after stopping the injection of malicious updates.
Related papers
- Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
We propose an efficient defense mechanism against backdoor threats using a concept known as machine unlearning.
This entails strategically creating a small set of poisoned samples to aid the model's rapid unlearning of backdoor vulnerabilities.
In the backdoor unlearning process, we present a novel token-based portion unlearning training regime.
arXiv Detail & Related papers (2024-09-29T02:55:38Z) - Lurking in the shadows: Unveiling Stealthy Backdoor Attacks against Personalized Federated Learning [31.386836775526685]
We propose textitPFedBA, a stealthy and effective backdoor attack strategy applicable to PFL systems.
Our study sheds light on the subtle yet potent backdoor threats to PFL systems, urging the community to bolster defenses against emerging backdoor challenges.
arXiv Detail & Related papers (2024-06-10T12:14:05Z) - EmInspector: Combating Backdoor Attacks in Federated Self-Supervised Learning Through Embedding Inspection [53.25863925815954]
Federated self-supervised learning (FSSL) has emerged as a promising paradigm that enables the exploitation of clients' vast amounts of unlabeled data.
While FSSL offers advantages, its susceptibility to backdoor attacks has not been investigated.
We propose the Embedding Inspector (EmInspector) that detects malicious clients by inspecting the embedding space of local models.
arXiv Detail & Related papers (2024-05-21T06:14:49Z) - Concealing Backdoor Model Updates in Federated Learning by Trigger-Optimized Data Poisoning [20.69655306650485]
Federated Learning (FL) is a decentralized machine learning method that enables participants to collaboratively train a model without sharing their private data.
Despite its privacy and scalability benefits, FL is susceptible to backdoor attacks.
We propose DPOT, a backdoor attack strategy in FL that dynamically constructs backdoor objectives by optimizing a backdoor trigger.
arXiv Detail & Related papers (2024-05-10T02:44:25Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - DABS: Data-Agnostic Backdoor attack at the Server in Federated Learning [14.312593000209693]
Federated learning (FL) attempts to train a global model by aggregating local models from distributed devices under the coordination of a central server.
The existence of a large number of heterogeneous devices makes FL vulnerable to various attacks, especially the stealthy backdoor attack.
We propose a new attack model for FL, namely Data-Agnostic Backdoor attack at the Server (DABS), where the server directly modifies the global model to backdoor an FL system.
arXiv Detail & Related papers (2023-05-02T09:04:34Z) - Mitigating Backdoors in Federated Learning with FLD [7.908496863030483]
Federated learning allows clients to collaboratively train a global model without uploading raw data for privacy preservation.
This feature has recently been found responsible for federated learning's vulnerability in the face of backdoor attacks.
We propose Federated Layer Detection (FLD), a novel model filtering approach for effectively defending against backdoor attacks.
arXiv Detail & Related papers (2023-03-01T07:54:54Z) - Revisiting Personalized Federated Learning: Robustness Against Backdoor
Attacks [53.81129518924231]
We conduct the first study of backdoor attacks in the pFL framework.
We show that pFL methods with partial model-sharing can significantly boost robustness against backdoor attacks.
We propose a lightweight defense method, Simple-Tuning, which empirically improves defense performance against backdoor attacks.
arXiv Detail & Related papers (2023-02-03T11:58:14Z) - Backdoor Attacks in Peer-to-Peer Federated Learning [11.235386862864397]
Peer-to-Peer Federated Learning (P2PFL) offer advantages in terms of both privacy and reliability.
We propose new backdoor attacks for P2PFL that leverage structural graph properties to select the malicious nodes, and achieve high attack success.
arXiv Detail & Related papers (2023-01-23T21:49:28Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
We study how hardening benign clients can affect the global model (and the malicious clients)
We propose a trigger reverse engineering based defense and show that our method can achieve improvement with guarantee robustness.
Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
arXiv Detail & Related papers (2022-10-23T22:24:03Z) - CRFL: Certifiably Robust Federated Learning against Backdoor Attacks [59.61565692464579]
This paper provides the first general framework, Certifiably Robust Federated Learning (CRFL), to train certifiably robust FL models against backdoors.
Our method exploits clipping and smoothing on model parameters to control the global model smoothness, which yields a sample-wise robustness certification on backdoors with limited magnitude.
arXiv Detail & Related papers (2021-06-15T16:50:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.