論文の概要: High-Resolution Be Aware! Improving the Self-Supervised Real-World Super-Resolution
- arxiv url: http://arxiv.org/abs/2411.16175v1
- Date: Mon, 25 Nov 2024 08:13:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:18:59.807588
- Title: High-Resolution Be Aware! Improving the Self-Supervised Real-World Super-Resolution
- Title(参考訳): 高分解能を意識して! 自己改善型リアルタイム超解法の改善
- Authors: Yuehan Zhang, Angela Yao,
- Abstract要約: 地平線画像は現実の環境では利用できないため、自己教師型学習は超高解像度には不可欠である。
既存の方法は、擬似ペアを作成したり、低分解能再構成目標を強制することによって、低分解能画像から自己監督を導出する。
本稿では,高解像度画像の認識を強化し,自己監督された現実世界の超解像を改善する。
- 参考スコア(独自算出の注目度): 37.546746047196486
- License:
- Abstract: Self-supervised learning is crucial for super-resolution because ground-truth images are usually unavailable for real-world settings. Existing methods derive self-supervision from low-resolution images by creating pseudo-pairs or by enforcing a low-resolution reconstruction objective. These methods struggle with insufficient modeling of real-world degradations and the lack of knowledge about high-resolution imagery, resulting in unnatural super-resolved results. This paper strengthens awareness of the high-resolution image to improve the self-supervised real-world super-resolution. We propose a controller to adjust the degradation modeling based on the quality of super-resolution results. We also introduce a novel feature-alignment regularizer that directly constrains the distribution of super-resolved images. Our method finetunes the off-the-shelf SR models for a target real-world domain. Experiments show that it produces natural super-resolved images with state-of-the-art perceptual performance.
- Abstract(参考訳): 地平線画像は現実の環境では利用できないため、自己教師型学習は超高解像度には不可欠である。
既存の方法は、擬似ペアを作成したり、低分解能再構成目標を強制することによって、低分解能画像から自己監督を導出する。
これらの手法は、現実世界の劣化のモデリングが不十分で、高解像度画像に関する知識が不足しているため、非自然的な超解像結果が得られない。
本稿では,高解像度画像の認識を強化し,自己監督された現実世界の超解像を改善する。
超解像結果の品質に基づいて劣化モデルを調整するための制御器を提案する。
また,超解像の分布を直接制約する特徴調整正規化器を導入する。
本手法は,実世界の対象領域に対して,市販のSRモデルを微調整する。
実験の結果,最先端の知覚性能を持つ自然超解像が得られた。
関連論文リスト
- ResMaster: Mastering High-Resolution Image Generation via Structural and Fine-Grained Guidance [46.64836025290448]
ResMasterは、解像度制限を超えて高品質な画像を生成するために、解像度制限付き拡散モデルに権限を与える、トレーニング不要の方法である。
パッチ・バイ・パッチで高解像度画像を作成するための構造的かつきめ細かいガイダンスを提供する。
実験では、ResMasterが高解像度画像生成のための新しいベンチマークを設定し、有望な効率を示す。
論文 参考訳(メタデータ) (2024-06-24T09:28:21Z) - DeeDSR: Towards Real-World Image Super-Resolution via Degradation-Aware Stable Diffusion [27.52552274944687]
低解像度画像のコンテンツや劣化を認識する拡散モデルの能力を高める新しい2段階の劣化認識フレームワークを提案する。
最初の段階では、教師なしのコントラスト学習を用いて画像劣化の表現を得る。
第2段階では、分解対応モジュールを単純化されたControlNetに統合し、様々な劣化への柔軟な適応を可能にします。
論文 参考訳(メタデータ) (2024-03-31T12:07:04Z) - Learning Dual-Level Deformable Implicit Representation for Real-World Scale Arbitrary Super-Resolution [81.74583887661794]
整数と非整数のスケーリング要素を併用した,新しい実世界のスーパーレゾリューションベンチマークを構築した。
実世界の任意の超解像を解くために,Dual-level Deformable Implicit Representation (DDIR)を提案する。
実世界の任意の超解像のためのRealArbiSRおよびRealSRベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-16T13:44:42Z) - Implicit Diffusion Models for Continuous Super-Resolution [65.45848137914592]
本稿では,高忠実度連続画像超解像のためのインプリシティ拡散モデル(IDM)を提案する。
IDMは暗黙のニューラル表現とデノナイジング拡散モデルを統合されたエンドツーエンドフレームワークに統合する。
スケーリング係数は分解能を調節し、最終出力におけるLR情報と生成された特徴の比率を変調する。
論文 参考訳(メタデータ) (2023-03-29T07:02:20Z) - How Real is Real: Evaluating the Robustness of Real-World Super
Resolution [0.0]
超解像は、高分解能画像上で行うダウンサンプリング法に頼って、既知の低分解能画像を形成するため、よく知られた問題である。
我々は,複数の最先端超解像法を評価し,様々な種類の実像を提示する際の性能評価を行う。
我々は、ほとんどの最先端超解法モデルにおいて差し迫った一般化問題を緩和する潜在的な解決策を提示する。
論文 参考訳(メタデータ) (2022-10-22T18:53:45Z) - A Generative Model for Hallucinating Diverse Versions of Super
Resolution Images [0.3222802562733786]
我々は、生成逆数モデルを用いて、同じ低解像度画像から異なる高解像度バージョンを得るという問題に取り組んでいる。
学習アプローチでは,高分解能画像の学習において,教師なしの保存と探索に高周波数を活用できる。
論文 参考訳(メタデータ) (2021-02-12T17:11:42Z) - Unsupervised Real Image Super-Resolution via Generative Variational
AutoEncoder [47.53609520395504]
古典的な例に基づく画像超解法を再考し、知覚的画像超解法のための新しい生成モデルを考案する。
本稿では,変分オートエンコーダを用いた共同画像デノベーションと超解像モデルを提案する。
判別器の助けを借りて、超分解能サブネットワークのオーバーヘッドを加味して、分解された画像をフォトリアリスティックな視覚的品質で超解凍する。
論文 参考訳(メタデータ) (2020-04-27T13:49:36Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) は、それまで文献になかった解像度で高解像度でリアルな画像を生成する。
本手法は, 従来よりも高分解能, スケールファクターの知覚品質において, 最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-03-08T16:44:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。