論文の概要: An End-to-End Robust Point Cloud Semantic Segmentation Network with Single-Step Conditional Diffusion Models
- arxiv url: http://arxiv.org/abs/2411.16308v2
- Date: Wed, 27 Nov 2024 02:20:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:27:06.628885
- Title: An End-to-End Robust Point Cloud Semantic Segmentation Network with Single-Step Conditional Diffusion Models
- Title(参考訳): 単一ステップ条件拡散モデルを用いたエンド・ツー・エンドロバスト・ポイント・クラウドセマンティック・セマンティック・セマンティック・セグメンテーション・ネットワーク
- Authors: Wentao Qu, Jing Wang, YongShun Gong, Xiaoshui Huang, Liang Xiao,
- Abstract要約: 既存の条件付き拡散確率モデル (DDPM) とノイズ・コンディション・フレームワーク (NCF) は, 3次元シーン理解作業において依然として困難である。
我々は、DtextbfDPMsのtextbfConditional-Noise Framework(CNF)に基づく、エンドツーエンドのロバストなtextbfSegmentation textbfNetを提案する。
CNFのおかげで、CDSegNetはnonのような単一ステップ推論でセマンティックラベルを生成することができる
- 参考スコア(独自算出の注目度): 16.415380685459485
- License:
- Abstract: Existing conditional Denoising Diffusion Probabilistic Models (DDPMs) with a Noise-Conditional Framework (NCF) remain challenging for 3D scene understanding tasks, as the complex geometric details in scenes increase the difficulty of fitting the gradients of the data distribution (the scores) from semantic labels. This also results in longer training and inference time for DDPMs compared to non-DDPMs. From a different perspective, we delve deeply into the model paradigm dominated by the Conditional Network. In this paper, we propose an end-to-end robust semantic \textbf{Seg}mentation \textbf{Net}work based on a \textbf{C}onditional-Noise Framework (CNF) of D\textbf{D}PMs, named \textbf{CDSegNet}. Specifically, CDSegNet models the Noise Network (NN) as a learnable noise-feature generator. This enables the Conditional Network (CN) to understand 3D scene semantics under multi-level feature perturbations, enhancing the generalization in unseen scenes. Meanwhile, benefiting from the noise system of DDPMs, CDSegNet exhibits strong noise and sparsity robustness in experiments. Moreover, thanks to CNF, CDSegNet can generate the semantic labels in a single-step inference like non-DDPMs, due to avoiding directly fitting the scores from semantic labels in the dominant network of CDSegNet. On public indoor and outdoor benchmarks, CDSegNet significantly outperforms existing methods, achieving state-of-the-art performance.
- Abstract(参考訳): 既存の条件付き拡散拡散確率モデル (DDPM) とノイズ・コンディション・フレームワーク (NCF) は、シーンの複雑な幾何学的詳細がセマンティック・ラベルからのデータ分布(スコア)の勾配を適合させることの難しさを増すため、3次元のシーン理解作業において依然として困難である。
これにより、非DDPMと比較してDDPMのトレーニング時間と推論時間が長くなる。
異なる観点から、コンディションネットワークが支配するモデルパラダイムを深く掘り下げます。
本稿では、D\textbf{D}PMs の \textbf{C}onditional-Noise Framework (CNF) に基づく、エンドツーエンドのロバストなセマンティック \textbf{Seg}mentation \textbf{Net}work を提案する。
具体的には、CDSegNetはノイズネットワーク(NN)を学習可能なノイズ機能ジェネレータとしてモデル化する。
これにより、条件付きネットワーク(CN)は、多段階の特徴摂動下での3次元シーンの意味を理解することができ、見えないシーンの一般化を促進することができる。
一方、DDPMのノイズシステムの恩恵を受け、CDSegNetは実験において強いノイズと疎結合性を示す。
さらに、CDSegNetはCNFのおかげで、非DDPMのような単一ステップの推論でセマンティックラベルを生成することができる。
公共の屋内および屋外のベンチマークでは、CDSegNetは既存の手法を著しく上回り、最先端のパフォーマンスを実現している。
関連論文リスト
- Multi-modality Affinity Inference for Weakly Supervised 3D Semantic
Segmentation [47.81638388980828]
本稿では,マルチモーダルポイント親和性推論モジュールを新たに導入した,シンプルで効果的なシーンレベルの弱教師付きポイントクラウドセグメンテーション法を提案する。
ScanNet と S3DIS のベンチマークでは,最先端の ScanNet と S3DIS のベンチマークでは 4% から 6% の mIoU を達成している。
論文 参考訳(メタデータ) (2023-12-27T14:01:35Z) - Human Semantic Segmentation using Millimeter-Wave Radar Sparse Point
Clouds [3.3888257250564364]
本稿では,ミリ波レーダの粗い逐次点雲のセマンティックセグメンテーションのためのフレームワークを提案する。
mmWaveデータの空間的特徴と時間的トポロジ的特徴は依然として問題である。
グラフ構造とトポロジ的特徴をポイントクラウドに導入し,セマンティックセグメンテーションフレームワークを提案する。
我々のモデルは、$mathbf82.31%$でカスタムデータセットの平均精度を達成し、最先端のアルゴリズムより優れている。
論文 参考訳(メタデータ) (2023-04-27T12:28:06Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPM) は様々な画像生成タスクにおいて顕著な成功を収めた。
セマンティック画像合成に関する最近の研究は、主に「GAN(Generative Adversarial Nets)」に追従している。
論文 参考訳(メタデータ) (2022-06-30T18:31:51Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud
Completion [69.32451612060214]
実スキャンされた3Dポイントクラウドはしばしば不完全であり、下流アプリケーションのために完全なポイントクラウドを復元することが重要である。
ほとんどの既存のポイントクラウド補完方法は、トレーニングにチャンファー距離(CD)損失を使用する。
本稿では,点雲完了のためのPDR(Point Diffusion-Refinement)パラダイムを提案する。
論文 参考訳(メタデータ) (2021-12-07T06:59:06Z) - Dynamic Convolution for 3D Point Cloud Instance Segmentation [146.7971476424351]
動的畳み込みに基づく3次元点雲からのインスタンスセグメンテーション手法を提案する。
我々は、同じ意味圏と閉投票を持つ等質点を幾何学的遠近点に対して収集する。
提案手法は提案不要であり、代わりに各インスタンスの空間的および意味的特性に適応する畳み込みプロセスを利用する。
論文 参考訳(メタデータ) (2021-07-18T09:05:16Z) - S3Net: 3D LiDAR Sparse Semantic Segmentation Network [1.330528227599978]
S3NetはLiDARポイントクラウドセマンティックセグメンテーションのための新しい畳み込みニューラルネットワークである。
sparse intra-channel attention module (sintraam)とsparse inter-channel attention module (sinteram)で構成されるエンコーダ-デコーダバックボーンを採用する。
論文 参考訳(メタデータ) (2021-03-15T22:15:24Z) - SCNet: Training Inference Sample Consistency for Instance Segmentation [15.963615360741356]
本稿では、トレーニング時のサンプルのIoU分布が推論時のそれに近いことを確認するために、サンプル一貫性ネットワーク(SCNet)と呼ばれるアーキテクチャを提案する。
標準データセットを用いた実験では,ボックスAP,マスクAP,推論速度など,複数の評価指標に対して提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-12-18T10:26:54Z) - S3CNet: A Sparse Semantic Scene Completion Network for LiDAR Point
Clouds [0.16799377888527683]
S3CNetはスパース畳み込みに基づくニューラルネットワークで、単一で統一されたLiDARポイントクラウドからセマンティックに完了したシーンを予測する。
提案手法は,Semantic KITTI ベンチマークを用いて,3次元課題における全ての課題に対して優れることを示す。
論文 参考訳(メタデータ) (2020-12-16T20:14:41Z) - End-to-End Object Detection with Fully Convolutional Network [71.56728221604158]
エンドツーエンド検出を実現するために,分類のための予測対応ワン・ツー・ワン (POTO) ラベルの割り当てを導入する。
局所領域における畳み込みの判別性を向上させるために, 簡易な3次元maxフィルタ(3dmf)を提案する。
エンドツーエンドのフレームワークは,COCOおよびCrowdHumanデータセット上のNMSを用いて,最先端の多くの検出器と競合する性能を実現する。
論文 参考訳(メタデータ) (2020-12-07T09:14:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。