Oriented histogram-based vector field embedding for characterizing 4D CT data sets in radiotherapy
- URL: http://arxiv.org/abs/2411.16314v1
- Date: Mon, 25 Nov 2024 12:05:57 GMT
- Title: Oriented histogram-based vector field embedding for characterizing 4D CT data sets in radiotherapy
- Authors: Frederic Madesta, Lukas Wimmert, Tobias Gauer, René Werner, Thilo Sentker,
- Abstract summary: In lung radiotherapy, the primary objective is to optimize treatment outcomes by minimizing exposure to healthy tissues while delivering the prescribed dose to the target volume.
The challenge lies in accounting for lung tissue motion due to breathing, which impacts precise treatment alignment.
The paper proposes a prospective approach that relies solely on pre-treatment information, such as planning CT scans and derived data like vector fields from deformable image registration.
- Score: 0.0
- License:
- Abstract: In lung radiotherapy, the primary objective is to optimize treatment outcomes by minimizing exposure to healthy tissues while delivering the prescribed dose to the target volume. The challenge lies in accounting for lung tissue motion due to breathing, which impacts precise treatment alignment. To address this, the paper proposes a prospective approach that relies solely on pre-treatment information, such as planning CT scans and derived data like vector fields from deformable image registration. This data is compared to analogous patient data to tailor treatment strategies, i.e., to be able to review treatment parameters and success for similar patients. To allow for such a comparison, an embedding and clustering strategy of prospective patient data is needed. Therefore, the main focus of this study lies on reducing the dimensionality of deformable registration-based vector fields by employing a voxel-wise spherical coordinate transformation and a low-dimensional 2D oriented histogram representation. Afterwards, a fully unsupervised UMAP embedding of the encoded vector fields (i.e., patient-specific motion information) becomes applicable. The functionality of the proposed method is demonstrated with 71 in-house acquired 4D CT data sets and 33 external 4D CT data sets. A comprehensive analysis of the patient clusters is conducted, focusing on the similarity of breathing patterns of clustered patients. The proposed general approach of reducing the dimensionality of registration vector fields by encoding the inherent information into oriented histograms is, however, applicable to other tasks.
Related papers
- Multi-Class Segmentation of Aortic Branches and Zones in Computed Tomography Angiography: The AortaSeg24 Challenge [55.252714550918824]
AortaSeg24 MICCAI Challenge introduced the first dataset of 100 CTA volumes annotated for 23 clinically relevant aortic branches and zones.
This paper presents the challenge design, dataset details, evaluation metrics, and an in-depth analysis of the top-performing algorithms.
arXiv Detail & Related papers (2025-02-07T21:09:05Z) - Geo-UNet: A Geometrically Constrained Neural Framework for Clinical-Grade Lumen Segmentation in Intravascular Ultrasound [7.760705377465734]
Current segmentation networks like the UNet lack the precision needed for clinical adoption in IVUS.
We propose the Geo-UNet framework to address these issues via a design informed by the geometry of the segmentation task.
The efficacy of our framework on a venous IVUS dataset is shown against state-of-the-art models.
arXiv Detail & Related papers (2024-08-09T02:55:25Z) - Voxel Scene Graph for Intracranial Hemorrhage [1.0074894923170512]
We develop a tailored object detection method for Intracranial Hemorrhage (ICH)
We unite with segmentation-grounded Scene Graph Generation (SGG) methods to learn a holistic representation of the clinical cerebral scene.
We evaluate our method on two head-CT datasets and demonstrate that our model can recall up to 74% of clinically relevant relations.
arXiv Detail & Related papers (2024-07-31T13:10:59Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - CT Perfusion is All We Need: 4D CNN Segmentation of Penumbra and Core in
Patients With Suspected Ischemic Stroke [1.6836876499886009]
This paper investigates different methods to utilize the entire 4 convolutionD as input to fully exploit thetemporal information.
Adopting the proposed 4D mJ-Net, a Dice Coefficient of 0.53 and 0.23 is achieved for segmenting penumbra and core areas, respectively.
arXiv Detail & Related papers (2023-03-15T16:53:19Z) - Validated respiratory drug deposition predictions from 2D and 3D medical
images with statistical shape models and convolutional neural networks [47.187609203210705]
We aim to develop and validate an automated computational framework for patient-specific deposition modelling.
An image processing approach is proposed that could produce 3D patient respiratory geometries from 2D chest X-rays and 3D CT images.
arXiv Detail & Related papers (2023-03-02T07:47:07Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Assignment Flow for Order-Constrained OCT Segmentation [0.0]
The identification of retinal layer thicknesses serves as an essential task be done for each patient separately.
The elaboration of automated segmentation models has become an important task in the field of medical image processing.
We propose a novel, purely data driven textitgeometric approach to order-constrained 3D OCT retinal cell layer segmentation
arXiv Detail & Related papers (2020-09-10T01:57:53Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.