Voxel Scene Graph for Intracranial Hemorrhage
- URL: http://arxiv.org/abs/2407.21580v1
- Date: Wed, 31 Jul 2024 13:10:59 GMT
- Title: Voxel Scene Graph for Intracranial Hemorrhage
- Authors: Antoine P. Sanner, Nils F. Grauhan, Marc A. Brockmann, Ahmed E. Othman, Anirban Mukhopadhyay,
- Abstract summary: We develop a tailored object detection method for Intracranial Hemorrhage (ICH)
We unite with segmentation-grounded Scene Graph Generation (SGG) methods to learn a holistic representation of the clinical cerebral scene.
We evaluate our method on two head-CT datasets and demonstrate that our model can recall up to 74% of clinically relevant relations.
- Score: 1.0074894923170512
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Patients with Intracranial Hemorrhage (ICH) face a potentially life-threatening condition, and patient-centered individualized treatment remains challenging due to possible clinical complications. Deep-Learning-based methods can efficiently analyze the routinely acquired head CTs to support the clinical decision-making. The majority of early work focuses on the detection and segmentation of ICH, but do not model the complex relations between ICH and adjacent brain structures. In this work, we design a tailored object detection method for ICH, which we unite with segmentation-grounded Scene Graph Generation (SGG) methods to learn a holistic representation of the clinical cerebral scene. To the best of our knowledge, this is the first application of SGG for 3D voxel images. We evaluate our method on two head-CT datasets and demonstrate that our model can recall up to 74% of clinically relevant relations. This work lays the foundation towards SGG for 3D voxel data. The generated Scene Graphs can already provide insights for the clinician, but are also valuable for all downstream tasks as a compact and interpretable representation.
Related papers
- Abnormality-Driven Representation Learning for Radiology Imaging [0.8321462983924758]
We introduce lesion-enhanced contrastive learning (LeCL), a novel approach to obtain visual representations driven by abnormalities in 2D axial slices across different locations of the CT scans.
We evaluate our approach across three clinical tasks: tumor lesion location, lung disease detection, and patient staging, benchmarking against four state-of-the-art foundation models.
arXiv Detail & Related papers (2024-11-25T13:53:26Z) - Oriented histogram-based vector field embedding for characterizing 4D CT data sets in radiotherapy [0.0]
In lung radiotherapy, the primary objective is to optimize treatment outcomes by minimizing exposure to healthy tissues while delivering the prescribed dose to the target volume.
The challenge lies in accounting for lung tissue motion due to breathing, which impacts precise treatment alignment.
The paper proposes a prospective approach that relies solely on pre-treatment information, such as planning CT scans and derived data like vector fields from deformable image registration.
arXiv Detail & Related papers (2024-11-25T12:05:57Z) - Multi-task Learning Approach for Intracranial Hemorrhage Prognosis [0.0]
We propose a 3D multi-task image model to predict prognosis, Glasgow Coma Scale and age, improving accuracy and interpretability.
Our method outperforms current state-of-the-art baseline image models, and demonstrates superior performance in ICH prognosis compared to four board-certified neuroradiologists using only CT scans as input.
arXiv Detail & Related papers (2024-08-16T14:56:17Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - Weakly Supervised Intracranial Hemorrhage Segmentation using Head-Wise
Gradient-Infused Self-Attention Maps from a Swin Transformer in Categorical
Learning [0.6269243524465492]
Intracranial hemorrhage (ICH) is a life-threatening medical emergency that requires timely diagnosis and accurate treatment.
Deep learning techniques have emerged as the leading approach for medical image analysis and processing.
We introduce a novel weakly supervised method for ICH segmentation, utilizing a Swin transformer trained on an ICH classification task with categorical labels.
arXiv Detail & Related papers (2023-04-11T00:17:34Z) - Cross-modal Clinical Graph Transformer for Ophthalmic Report Generation [116.87918100031153]
We propose a Cross-modal clinical Graph Transformer (CGT) for ophthalmic report generation (ORG)
CGT injects clinical relation triples into the visual features as prior knowledge to drive the decoding procedure.
Experiments on the large-scale FFA-IR benchmark demonstrate that the proposed CGT is able to outperform previous benchmark methods.
arXiv Detail & Related papers (2022-06-04T13:16:30Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++ is an algorithm designed to segment and label the cerebrovascular tree on CTA scans.
We extend the labeling mechanism for the cerebral arteries to identify occluded vessels.
We present the generic concept of iterative systematic search for pathways on all nodes of said model, which enables new interactive features.
arXiv Detail & Related papers (2022-04-26T14:20:26Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Volumetric Medical Image Segmentation: A 3D Deep Coarse-to-fine
Framework and Its Adversarial Examples [74.92488215859991]
We propose a novel 3D-based coarse-to-fine framework to efficiently tackle these challenges.
The proposed 3D-based framework outperforms their 2D counterparts by a large margin since it can leverage the rich spatial information along all three axes.
We conduct experiments on three datasets, the NIH pancreas dataset, the JHMI pancreas dataset and the JHMI pathological cyst dataset.
arXiv Detail & Related papers (2020-10-29T15:39:19Z) - Structured Landmark Detection via Topology-Adapting Deep Graph Learning [75.20602712947016]
We present a new topology-adapting deep graph learning approach for accurate anatomical facial and medical landmark detection.
The proposed method constructs graph signals leveraging both local image features and global shape features.
Experiments are conducted on three public facial image datasets (WFLW, 300W, and COFW-68) as well as three real-world X-ray medical datasets (Cephalometric (public), Hand and Pelvis)
arXiv Detail & Related papers (2020-04-17T11:55:03Z) - Multi-Scale Supervised 3D U-Net for Kidneys and Kidney Tumor
Segmentation [0.8397730500554047]
We present a multi-scale supervised 3D U-Net, MSS U-Net, to automatically segment kidneys and kidney tumors from CT images.
Our architecture combines deep supervision with exponential logarithmic loss to increase the 3D U-Net training efficiency.
This architecture shows superior performance compared to state-of-the-art works using data from KiTS19 public dataset.
arXiv Detail & Related papers (2020-04-17T08:25:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.