Monocular Lane Detection Based on Deep Learning: A Survey
- URL: http://arxiv.org/abs/2411.16316v2
- Date: Tue, 26 Nov 2024 14:31:08 GMT
- Title: Monocular Lane Detection Based on Deep Learning: A Survey
- Authors: Xin He, Haiyun Guo, Kuan Zhu, Bingke Zhu, Xu Zhao, Jianwu Fang, Jinqiao Wang,
- Abstract summary: Lane detection plays an important role in autonomous driving perception systems.
As deep learning algorithms gain popularity, monocular lane detection methods based on deep learning have demonstrated superior performance.
This paper presents a comprehensive overview of existing methods, encompassing both the increasingly mature 2D lane detection approaches and the developing 3D lane detection works.
- Score: 51.19079381823076
- License:
- Abstract: Lane detection plays an important role in autonomous driving perception systems. As deep learning algorithms gain popularity, monocular lane detection methods based on deep learning have demonstrated superior performance and emerged as a key research direction in autonomous driving perception. The core design of these algorithmic frameworks can be summarized as follows: (1) Task paradigm, focusing on lane instance-level discrimination; (2) Lane modeling, representing lanes as a set of learnable parameters in the neural network; (3) Global context supplementation, enhancing the detection of obscure lanes; (4) Perspective effect elimination, providing 3D lanes usable for downstream applications. From these perspectives, this paper presents a comprehensive overview of existing methods, encompassing both the increasingly mature 2D lane detection approaches and the developing 3D lane detection works. For a relatively fair comparison, in addition to comparing the performance of mainstream methods on different benchmarks, their inference speed is also investigated under a unified setting. Moreover, we present some extended works on lane detection, including multi-task perception, video lane detection, online high-definition map construction, and lane topology reasoning, to offer readers a comprehensive roadmap for the evolution of lane detection. Finally, we point out some potential future research directions in this field. We exhaustively collect the papers and codes of existing works at https://github.com/Core9724/Awesome-Lane-Detection and will keep tracing the research.
Related papers
- Attention-based U-Net Method for Autonomous Lane Detection [0.5461938536945723]
Two deep learning-based lane recognition methods are proposed in this study.
The first method employs the Feature Pyramid Network (FPN) model, delivering an impressive 87.59% accuracy in detecting road lanes.
The second method, which incorporates attention layers into the U-Net model, significantly boosts the performance of semantic segmentation tasks.
arXiv Detail & Related papers (2024-11-16T22:20:11Z) - Monocular 3D lane detection for Autonomous Driving: Recent Achievements, Challenges, and Outlooks [10.780826266192621]
3D lane detection is essential in autonomous driving as it extracts structural and traffic information from the road in three-dimensional space.
Recent advancements in visual perception seem inadequate for the development of fully reliable 3D lane detection algorithms.
This review looks back and analyzes the current state of achievements in the field of 3D lane detection research.
arXiv Detail & Related papers (2024-04-10T09:35:50Z) - ENet-21: An Optimized light CNN Structure for Lane Detection [1.4542411354617986]
This study develops an optimal structure for the lane detection problem.
It offers a promising solution for driver assistance features in modern vehicles.
Experiments on the TuSimple dataset support the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-03-28T19:07:26Z) - LaneSegNet: Map Learning with Lane Segment Perception for Autonomous
Driving [60.55208681215818]
We introduce LaneSegNet, the first end-to-end mapping network generating lane segments to obtain a complete representation of the road structure.
Our algorithm features two key modifications. One is a lane attention module to capture pivotal region details within the long-range feature space.
On the OpenLane-V2 dataset, LaneSegNet outperforms previous counterparts by a substantial gain across three tasks.
arXiv Detail & Related papers (2023-12-26T16:22:10Z) - Decoupling the Curve Modeling and Pavement Regression for Lane Detection [67.22629246312283]
curve-based lane representation is a popular approach in many lane detection methods.
We propose a new approach to the lane detection task by decomposing it into two parts: curve modeling and ground height regression.
arXiv Detail & Related papers (2023-09-19T11:24:14Z) - OpenLane-V2: A Topology Reasoning Benchmark for Unified 3D HD Mapping [84.65114565766596]
We present OpenLane-V2, the first dataset on topology reasoning for traffic scene structure.
OpenLane-V2 consists of 2,000 annotated road scenes that describe traffic elements and their correlation to the lanes.
We evaluate various state-of-the-art methods, and present their quantitative and qualitative results on OpenLane-V2 to indicate future avenues for investigating topology reasoning in traffic scenes.
arXiv Detail & Related papers (2023-04-20T16:31:22Z) - Graph-based Topology Reasoning for Driving Scenes [102.35885039110057]
We present TopoNet, the first end-to-end framework capable of abstracting traffic knowledge beyond conventional perception tasks.
We evaluate TopoNet on the challenging scene understanding benchmark, OpenLane-V2.
arXiv Detail & Related papers (2023-04-11T15:23:29Z) - Multi Lane Detection [12.684545950979187]
Lane detection is a basic module in autonomous driving.
Our work is based on CNN backbone DLA-34, along with Affinity Fields.
We investigate novel decoding methods to achieve more efficient lane detection algorithm.
arXiv Detail & Related papers (2022-12-22T08:20:08Z) - RCLane: Relay Chain Prediction for Lane Detection [76.62424079494285]
We present a new method for lane detection based on relay chain prediction.
Our strategy allows us to establish new state-of-the-art on four major benchmarks including TuSimple, CULane, CurveLanes and LLAMAS.
arXiv Detail & Related papers (2022-07-19T16:48:39Z) - Lane Detection Model Based on Spatio-Temporal Network With Double
Convolutional Gated Recurrent Units [11.968518335236787]
Lane detection will remain an open problem for some time to come.
A-temporal network with double Conal Gated Recurrent Units (ConvGRUs) proposed to address lane detection in challenging scenes.
Our model can outperform the state-of-the-art lane detection models.
arXiv Detail & Related papers (2020-08-10T06:50:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.