ENet-21: An Optimized light CNN Structure for Lane Detection
- URL: http://arxiv.org/abs/2403.19782v2
- Date: Tue, 6 Aug 2024 21:14:43 GMT
- Title: ENet-21: An Optimized light CNN Structure for Lane Detection
- Authors: Seyed Rasoul Hosseini, Hamid Taheri, Mohammad Teshnehlab,
- Abstract summary: This study develops an optimal structure for the lane detection problem.
It offers a promising solution for driver assistance features in modern vehicles.
Experiments on the TuSimple dataset support the effectiveness of the proposed method.
- Score: 1.4542411354617986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lane detection for autonomous vehicles is an important concept, yet it is a challenging issue of driver assistance systems in modern vehicles. The emergence of deep learning leads to significant progress in self-driving cars. Conventional deep learning-based methods handle lane detection problems as a binary segmentation task and determine whether a pixel belongs to a line. These methods rely on the assumption of a fixed number of lanes, which does not always work. This study aims to develop an optimal structure for the lane detection problem, offering a promising solution for driver assistance features in modern vehicles by utilizing a machine learning method consisting of binary segmentation and Affinity Fields that can manage varying numbers of lanes and lane change scenarios. In this approach, the Convolutional Neural Network (CNN), is selected as a feature extractor, and the final output is obtained through clustering of the semantic segmentation and Affinity Field outputs. Our method uses less complex CNN architecture than existing ones. Experiments on the TuSimple dataset support the effectiveness of the proposed method.
Related papers
- Monocular Lane Detection Based on Deep Learning: A Survey [51.19079381823076]
Lane detection plays an important role in autonomous driving perception systems.
As deep learning algorithms gain popularity, monocular lane detection methods based on deep learning have demonstrated superior performance.
This paper presents a comprehensive overview of existing methods, encompassing both the increasingly mature 2D lane detection approaches and the developing 3D lane detection works.
arXiv Detail & Related papers (2024-11-25T12:09:43Z) - Attention-based U-Net Method for Autonomous Lane Detection [0.5461938536945723]
Two deep learning-based lane recognition methods are proposed in this study.
The first method employs the Feature Pyramid Network (FPN) model, delivering an impressive 87.59% accuracy in detecting road lanes.
The second method, which incorporates attention layers into the U-Net model, significantly boosts the performance of semantic segmentation tasks.
arXiv Detail & Related papers (2024-11-16T22:20:11Z) - Cross Dataset Analysis and Network Architecture Repair for Autonomous
Car Lane Detection [5.428120316375907]
We have performed cross dataset analysis and network architecture repair for the lane detection application in autonomous vehicles.
ERFCondLaneNet is an enhancement to the CondlaneNet used for lane identification framework to solve the difficulty of detecting lane lines with complex topologies.
arXiv Detail & Related papers (2024-09-10T20:27:49Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Multi Lane Detection [12.684545950979187]
Lane detection is a basic module in autonomous driving.
Our work is based on CNN backbone DLA-34, along with Affinity Fields.
We investigate novel decoding methods to achieve more efficient lane detection algorithm.
arXiv Detail & Related papers (2022-12-22T08:20:08Z) - RCLane: Relay Chain Prediction for Lane Detection [76.62424079494285]
We present a new method for lane detection based on relay chain prediction.
Our strategy allows us to establish new state-of-the-art on four major benchmarks including TuSimple, CULane, CurveLanes and LLAMAS.
arXiv Detail & Related papers (2022-07-19T16:48:39Z) - Laneformer: Object-aware Row-Column Transformers for Lane Detection [96.62919884511287]
Laneformer is a transformer-based architecture tailored for lane detection in autonomous driving.
Inspired by recent advances of the transformer encoder-decoder architecture in various vision tasks, we move forwards to design a new end-to-end Laneformer architecture.
arXiv Detail & Related papers (2022-03-18T10:14:35Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive
Point Blending [102.98909328368481]
CurveLane-NAS is a novel lane-sensitive architecture search framework.
It captures both long-ranged coherent and accurate short-range curve information.
It unifies both architecture search and post-processing on curve lane predictions via point blending.
arXiv Detail & Related papers (2020-07-23T17:23:26Z) - Multi-lane Detection Using Instance Segmentation and Attentive Voting [0.0]
We propose a novel solution to multi-lane detection, which outperforms state of the art methods in terms of both accuracy and speed.
We are able to obtain a lane segmentation accuracy of 99.87% running at 54.53 fps (average)
arXiv Detail & Related papers (2020-01-01T16:48:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.