Multi-modal Retrieval Augmented Multi-modal Generation: A Benchmark, Evaluate Metrics and Strong Baselines
- URL: http://arxiv.org/abs/2411.16365v1
- Date: Mon, 25 Nov 2024 13:20:19 GMT
- Title: Multi-modal Retrieval Augmented Multi-modal Generation: A Benchmark, Evaluate Metrics and Strong Baselines
- Authors: Zi-Ao Ma, Tian Lan, Rong-Cheng Tu, Yong Hu, Heyan Huang, Xian-Ling Mao,
- Abstract summary: This paper investigates an intriguing task of Multi-modal Retrieval Augmented Multi-modal Generation (M$2$RAG)
This task requires foundation models to browse multi-modal web pages, with mixed text and images, and generate multi-modal responses for solving user queries.
We construct a benchmark for M$2$RAG task, equipped with a suite of text-modal metrics and multi-modal metrics to analyze the capabilities of existing foundation models.
- Score: 63.427721165404634
- License:
- Abstract: This paper investigates an intriguing task of Multi-modal Retrieval Augmented Multi-modal Generation (M$^2$RAG). This task requires foundation models to browse multi-modal web pages, with mixed text and images, and generate multi-modal responses for solving user queries, which exhibits better information density and readability. Given the early researching stage of M$^2$RAG task, there is a lack of systematic studies and analysis. To fill this gap, we construct a benchmark for M$^2$RAG task, equipped with a suite of text-modal metrics and multi-modal metrics to analyze the capabilities of existing foundation models. Besides, we also propose several effective methods for foundation models to accomplish this task, based on the comprehensive evaluation results on our benchmark. Extensive experimental results reveal several intriguing phenomena worth further research.
Related papers
- Needle In A Multimodal Haystack [79.81804334634408]
We present the first benchmark specifically designed to evaluate the capability of existing MLLMs to comprehend long multimodal documents.
Our benchmark includes three types of evaluation tasks: multimodal retrieval, counting, and reasoning.
We observe that existing models still have significant room for improvement on these tasks, especially on vision-centric evaluation.
arXiv Detail & Related papers (2024-06-11T13:09:16Z) - MMT-Bench: A Comprehensive Multimodal Benchmark for Evaluating Large Vision-Language Models Towards Multitask AGI [71.53579367538725]
MMT-Bench is a benchmark designed to assess Large Vision-Language Models (LVLMs) across massive multimodal tasks.
MMT-Bench comprises $31,325$ meticulously curated multi-choice visual questions from various multimodal scenarios.
arXiv Detail & Related papers (2024-04-24T17:37:05Z) - Large Multimodal Agents: A Survey [78.81459893884737]
Large language models (LLMs) have achieved superior performance in powering text-based AI agents.
There is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain.
This review aims to provide valuable insights and guidelines for future research in this rapidly evolving field.
arXiv Detail & Related papers (2024-02-23T06:04:23Z) - MM-BigBench: Evaluating Multimodal Models on Multimodal Content
Comprehension Tasks [56.60050181186531]
We introduce MM-BigBench, which incorporates a diverse range of metrics to offer an extensive evaluation of the performance of various models and instructions.
Our paper evaluates a total of 20 language models (14 MLLMs) on 14 multimodal datasets spanning 6 tasks, with 10 instructions for each task, and derives novel insights.
arXiv Detail & Related papers (2023-10-13T11:57:04Z) - Robustness of Fusion-based Multimodal Classifiers to Cross-Modal Content
Dilutions [27.983902791798965]
We develop a model that generates dilution text that maintains relevance and topical coherence with the image and existing text.
We find that the performance of task-specific fusion-based multimodal classifiers drops by 23.3% and 22.5%, respectively, in the presence of dilutions generated by our model.
Our work aims to highlight and encourage further research on the robustness of deep multimodal models to realistic variations.
arXiv Detail & Related papers (2022-11-04T17:58:02Z) - Logically at the Factify 2022: Multimodal Fact Verification [2.8914815569249823]
This paper describes our participant system for the multi-modal fact verification (Factify) challenge at AAAI 2022.
Two baseline approaches are proposed and explored including an ensemble model and a multi-modal attention network.
Our best model is ranked first in leaderboard which obtains a weighted average F-measure of 0.77 on both validation and test set.
arXiv Detail & Related papers (2021-12-16T23:34:07Z) - MISA: Modality-Invariant and -Specific Representations for Multimodal
Sentiment Analysis [48.776247141839875]
We propose a novel framework, MISA, which projects each modality to two distinct subspaces.
The first subspace is modality-invariant, where the representations across modalities learn their commonalities and reduce the modality gap.
Our experiments on popular sentiment analysis benchmarks, MOSI and MOSEI, demonstrate significant gains over state-of-the-art models.
arXiv Detail & Related papers (2020-05-07T15:13:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.