Benchmarking Foundation Models with Multimodal Public Electronic Health Records
- URL: http://arxiv.org/abs/2507.14824v1
- Date: Sun, 20 Jul 2025 05:08:28 GMT
- Title: Benchmarking Foundation Models with Multimodal Public Electronic Health Records
- Authors: Kunyu Yu, Rui Yang, Jingchi Liao, Siqi Li, Huitao Li, Irene Li, Yifan Peng, Rishikesan Kamaleswaran, Nan Liu,
- Abstract summary: We present a benchmark that evaluates the performance, fairness, and interpretability of foundation models.<n>We developed a standardized data processing pipeline that harmonizes heterogeneous clinical records into an analysis-ready format.<n>Our findings demonstrate that incorporating multiple data modalities leads to consistent improvements in predictive performance without introducing additional bias.
- Score: 24.527782376051693
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Foundation models have emerged as a powerful approach for processing electronic health records (EHRs), offering flexibility to handle diverse medical data modalities. In this study, we present a comprehensive benchmark that evaluates the performance, fairness, and interpretability of foundation models, both as unimodal encoders and as multimodal learners, using the publicly available MIMIC-IV database. To support consistent and reproducible evaluation, we developed a standardized data processing pipeline that harmonizes heterogeneous clinical records into an analysis-ready format. We systematically compared eight foundation models, encompassing both unimodal and multimodal models, as well as domain-specific and general-purpose variants. Our findings demonstrate that incorporating multiple data modalities leads to consistent improvements in predictive performance without introducing additional bias. Through this benchmark, we aim to support the development of effective and trustworthy multimodal artificial intelligence (AI) systems for real-world clinical applications. Our code is available at https://github.com/nliulab/MIMIC-Multimodal.
Related papers
- MoMA: A Mixture-of-Multimodal-Agents Architecture for Enhancing Clinical Prediction Modelling [5.334856176687711]
We introduce a novel architecture, Mixture-of-Multimodal-Agents (MoMA), designed to leverage multiple large language model (LLM) agents for clinical prediction tasks.<n>MoMA employs specialized LLM agents ("specialist agents") to convert non-textual modalities, such as medical images and laboratory results, into structured textual summaries.<n>MoMA outperforms current state-of-the-art methods, highlighting its enhanced accuracy and flexibility across various tasks.
arXiv Detail & Related papers (2025-08-07T15:28:34Z) - Equitable Electronic Health Record Prediction with FAME: Fairness-Aware Multimodal Embedding [4.383326688441244]
We introduce FAME (Fairness-Aware Multimodal Embeddings), a framework that explicitly weights each modality according to its fairness contribution.<n>We leverage the Error Distribution Disparity Index (EDDI) to measure fairness across subgroups.<n>We demonstrate FAME's effectiveness in terms of performance and fairness compared with other baselines.
arXiv Detail & Related papers (2025-06-16T05:23:42Z) - PyTDC: A multimodal machine learning training, evaluation, and inference platform for biomedical foundation models [59.17570021208177]
PyTDC is a machine-learning platform providing streamlined training, evaluation, and inference software for multimodal biological AI models.<n>This paper discusses the components of PyTDC's architecture and, to our knowledge, the first-of-its-kind case study on the introduced single-cell drug-target nomination ML task.
arXiv Detail & Related papers (2025-05-08T18:15:38Z) - What are You Looking at? Modality Contribution in Multimodal Medical Deep Learning Methods [0.13194391758295113]
We present a method that measures the importance of each modality in a dataset for the model to fulfill its task.<n>We found that some networks have modality preferences that tend to unimodal collapses, while some datasets are imbalanced from the ground up.<n>With our method we make a crucial contribution to the field of interpretability in deep learning based multimodal research.
arXiv Detail & Related papers (2025-02-28T12:39:39Z) - MIND: Modality-Informed Knowledge Distillation Framework for Multimodal Clinical Prediction Tasks [50.98856172702256]
We propose the Modality-INformed knowledge Distillation (MIND) framework, a multimodal model compression approach.<n>MIND transfers knowledge from ensembles of pre-trained deep neural networks of varying sizes into a smaller multimodal student.<n>We evaluate MIND on binary and multilabel clinical prediction tasks using time series data and chest X-ray images.
arXiv Detail & Related papers (2025-02-03T08:50:00Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.<n>Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.<n>Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.<n>Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - Multi-modal Retrieval Augmented Multi-modal Generation: Datasets, Evaluation Metrics and Strong Baselines [63.22096609916707]
Multi-modal Retrieval Augmented Multi-modal Generation (M$2$RAG) is a novel task that enables foundation models to process multi-modal web content.<n>Despite its potential impact, M$2$RAG remains understudied, lacking comprehensive analysis and high-quality data resources.
arXiv Detail & Related papers (2024-11-25T13:20:19Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z) - Quantifying & Modeling Multimodal Interactions: An Information
Decomposition Framework [89.8609061423685]
We propose an information-theoretic approach to quantify the degree of redundancy, uniqueness, and synergy relating input modalities with an output task.
To validate PID estimation, we conduct extensive experiments on both synthetic datasets where the PID is known and on large-scale multimodal benchmarks.
We demonstrate their usefulness in (1) quantifying interactions within multimodal datasets, (2) quantifying interactions captured by multimodal models, (3) principled approaches for model selection, and (4) three real-world case studies.
arXiv Detail & Related papers (2023-02-23T18:59:05Z) - Integrated multimodal artificial intelligence framework for healthcare
applications [3.6222901399459215]
We propose and evaluate a unified Holistic AI in Medicine framework to facilitate the generation and testing of AI systems that leverage multimodal inputs.
Our approach uses generalizable data pre-processing and machine learning modeling stages that can be readily adapted for research and deployment in healthcare environments.
We show that this framework can consistently and robustly produce models that outperform similar single-source approaches across various healthcare demonstrations.
arXiv Detail & Related papers (2022-02-25T22:08:09Z) - MELINDA: A Multimodal Dataset for Biomedical Experiment Method
Classification [14.820951153262685]
We introduce a new dataset, MELINDA, for Multimodal biomEdicaL experImeNt methoD clAssification.
The dataset is collected in a fully automated distant supervision manner, where the labels are obtained from an existing curated database.
We benchmark various state-of-the-art NLP and computer vision models, including unimodal models which only take either caption texts or images as inputs.
arXiv Detail & Related papers (2020-12-16T19:11:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.