TIFeD: a Tiny Integer-based Federated learning algorithm with Direct feedback alignment
- URL: http://arxiv.org/abs/2411.16442v1
- Date: Mon, 25 Nov 2024 14:44:26 GMT
- Title: TIFeD: a Tiny Integer-based Federated learning algorithm with Direct feedback alignment
- Authors: Luca Colombo, Alessandro Falcetta, Manuel Roveri,
- Abstract summary: Training machine and deep learning models directly on resource-constrained devices is the next challenge in the field of tiny machine learning.
The proposedeD algorithm, with its full-network and single-layer implementations, is made available to the scientific community as a public repository.
- Score: 47.39949471062935
- License:
- Abstract: Training machine and deep learning models directly on extremely resource-constrained devices is the next challenge in the field of tiny machine learning. The related literature in this field is very limited, since most of the solutions focus only on on-device inference or model adaptation through online learning, leaving the training to be carried out on external Cloud services. An interesting technological perspective is to exploit Federated Learning (FL), which allows multiple devices to collaboratively train a shared model in a distributed way. However, the main drawback of state-of-the-art FL algorithms is that they are not suitable for running on tiny devices. For the first time in the literature, in this paper we introduce TIFeD, a Tiny Integer-based Federated learning algorithm with Direct Feedback Alignment (DFA) entirely implemented by using an integer-only arithmetic and being specifically designed to operate on devices with limited resources in terms of memory, computation and energy. Besides the traditional full-network operating modality, in which each device of the FL setting trains the entire neural network on its own local data, we propose an innovative single-layer TIFeD implementation, which enables each device to train only a portion of the neural network model and opens the door to a new way of distributing the learning procedure across multiple devices. The experimental results show the feasibility and effectiveness of the proposed solution. The proposed TIFeD algorithm, with its full-network and single-layer implementations, is made available to the scientific community as a public repository.
Related papers
- Coordination-free Decentralised Federated Learning on Complex Networks:
Overcoming Heterogeneity [2.6849848612544]
Federated Learning (FL) is a framework for performing a learning task in an edge computing scenario.
We propose a communication-efficient Decentralised Federated Learning (DFL) algorithm able to cope with them.
Our solution allows devices communicating only with their direct neighbours to train an accurate model.
arXiv Detail & Related papers (2023-12-07T18:24:19Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
arXiv Detail & Related papers (2022-10-24T10:59:29Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
Federated learning (FedL) has emerged as a popular technique for distributing model training over a set of wireless devices.
We develop parallel successive learning (PSL), which expands the FedL architecture along three dimensions.
Our analysis sheds light on the notion of cold vs. warmed up models, and model inertia in distributed machine learning.
arXiv Detail & Related papers (2022-02-07T05:11:01Z) - Federated Learning Based on Dynamic Regularization [43.137064459520886]
We propose a novel federated learning method for distributively training neural network models.
Server orchestrates cooperation between a subset of randomly chosen devices in each round.
arXiv Detail & Related papers (2021-11-08T03:58:28Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - FedHe: Heterogeneous Models and Communication-Efficient Federated
Learning [0.0]
Federated learning (FL) is able to manage edge devices to cooperatively train a model while maintaining the training data local and private.
We propose a novel FL method, called FedHe, inspired by knowledge distillation, which can train heterogeneous models and support asynchronous training processes.
arXiv Detail & Related papers (2021-10-19T12:18:37Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
Internet of Things (IoT) devices may not be able to transmit their collected data to a central controller for training machine learning models.
Google's seminal FL algorithm requires all devices to be directly connected with a central controller.
This paper introduces a novel FL framework, called collaborative FL (CFL), which enables edge devices to implement FL with less reliance on a central controller.
arXiv Detail & Related papers (2020-06-03T20:00:02Z) - Ternary Compression for Communication-Efficient Federated Learning [17.97683428517896]
Federated learning provides a potential solution to privacy-preserving and secure machine learning.
We propose a ternary federated averaging protocol (T-FedAvg) to reduce the upstream and downstream communication of federated learning systems.
Our results show that the proposed T-FedAvg is effective in reducing communication costs and can even achieve slightly better performance on non-IID data.
arXiv Detail & Related papers (2020-03-07T11:55:34Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z) - Federated Learning with Cooperating Devices: A Consensus Approach for
Massive IoT Networks [8.456633924613456]
Federated learning (FL) is emerging as a new paradigm to train machine learning models in distributed systems.
The paper proposes a fully distributed (or server-less) learning approach: the proposed FL algorithms leverage the cooperation of devices that perform data operations inside the network.
The approach lays the groundwork for integration of FL within 5G and beyond networks characterized by decentralized connectivity and computing.
arXiv Detail & Related papers (2019-12-27T15:16:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.