NonSysId: A nonlinear system identification package with improved model term selection for NARMAX models
- URL: http://arxiv.org/abs/2411.16475v1
- Date: Mon, 25 Nov 2024 15:19:19 GMT
- Title: NonSysId: A nonlinear system identification package with improved model term selection for NARMAX models
- Authors: Rajintha Gunawardena, Zi-Qiang Lang, Fei He,
- Abstract summary: This paper introduces NonSysId, an open-sourced software package designed for nonlinear system identification.
The software incorporates an advanced term selection methodology that prioritises on simulation (free-run) accuracy while preserving model parsimony.
NonSysId is particularly suitable for real-time applications such as structural health monitoring, fault diagnosis, and biomedical signal processing.
- Score: 2.6684288899870543
- License:
- Abstract: System identification involves constructing mathematical models of dynamic systems using input-output data, enabling analysis and prediction of system behaviour in both time and frequency domains. This approach can model the entire system or capture specific dynamics within it. For meaningful analysis, it is essential for the model to accurately reflect the underlying system's behaviour. This paper introduces NonSysId, an open-sourced MATLAB software package designed for nonlinear system identification, specifically focusing on NARMAX models. The software incorporates an advanced term selection methodology that prioritises on simulation (free-run) accuracy while preserving model parsimony. A key feature is the integration of iterative Orthogonal Forward Regression (iOFR) with Predicted Residual Sum of Squares (PRESS) statistic-based term selection, facilitating robust model generalisation without the need for a separate validation dataset. Furthermore, techniques for reducing computational overheads are implemented. These features make NonSysId particularly suitable for real-time applications such as structural health monitoring, fault diagnosis, and biomedical signal processing, where it is a challenge to capture the signals under consistent conditions, resulting in limited or no validation data.
Related papers
- Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference.
Our framework leads to a family of three novel objectives that are all simulation-free, and thus scalable.
We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.
arXiv Detail & Related papers (2024-10-10T17:18:30Z) - Analysis of Numerical Integration in RNN-Based Residuals for Fault
Diagnosis of Dynamic Systems [0.6999740786886536]
The paper includes a case study of a heavy-duty truck's after-treatment system to highlight the potential of these techniques for improving fault diagnosis performance.
Data-driven modeling and machine learning are widely used to model the behavior of dynamic systems.
arXiv Detail & Related papers (2023-05-08T12:48:18Z) - Direct Estimation of Parameters in ODE Models Using WENDy: Weak-form
Estimation of Nonlinear Dynamics [0.0]
We introduce the Weak-form Estimation of Dynamics (WENDy) method for estimating model parameters for non-linear systems of ODEs.
WENDy computes accurate estimates and is robust to large (biologically relevant) levels of measurement noise.
We demonstrate the high robustness and computational efficiency by applying WENDy to estimate parameters in some common models from population biology, neuroscience, and biochemistry.
arXiv Detail & Related papers (2023-02-26T08:49:34Z) - Robust identification of non-autonomous dynamical systems using
stochastic dynamics models [0.0]
This paper considers the problem of system identification (ID) of linear and nonlinear non-autonomous systems from noisy and sparse data.
We propose and analyze an objective function derived from a Bayesian formulation for learning a hidden Markov model.
We show that our proposed approach has improved smoothness and inherent regularization that make it well-suited for system ID.
arXiv Detail & Related papers (2022-12-20T16:36:23Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
We propose a method for synthesising controllers for Markov jump linear systems.
Our method is based on a finite-state abstraction that captures both the discrete (mode-jumping) and continuous (stochastic linear) behaviour of the MJLS.
We apply our method to multiple realistic benchmark problems, in particular, a temperature control and an aerial vehicle delivery problem.
arXiv Detail & Related papers (2022-12-01T17:36:30Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Formal Verification of Unknown Dynamical Systems via Gaussian Process Regression [11.729744197698718]
Leveraging autonomous systems in safety-critical scenarios requires verifying their behaviors in the presence of uncertainties.
We develop a framework for verifying discrete-time dynamical systems with unmodelled dynamics and noisy measurements.
arXiv Detail & Related papers (2021-12-31T05:10:05Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z) - LSTM-based Anomaly Detection for Non-linear Dynamical System [11.797156206007612]
We propose a novel anomaly detection scheme in non-linear dynamical system based on Long Short-Term Memory (LSTM)
We first present the framework of LSTM-based anomaly detection in non-linear dynamical system, including data preprocessing, multi-step prediction and anomaly detection.
Our proposed multi-step prediction method can achieve a higher prediction accuracy than traditional method in wall shear stress dataset.
arXiv Detail & Related papers (2020-06-05T01:09:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.