PriorPath: Coarse-To-Fine Approach for Controlled De-Novo Pathology Semantic Masks Generation
- URL: http://arxiv.org/abs/2411.16515v1
- Date: Mon, 25 Nov 2024 15:57:19 GMT
- Title: PriorPath: Coarse-To-Fine Approach for Controlled De-Novo Pathology Semantic Masks Generation
- Authors: Nati Daniel, May Nathan, Eden Azeroual, Yael Fisher, Yonatan Savir,
- Abstract summary: We present a pipeline, coined PriorPath, that generates detailed, realistic, semantic masks derived from coarse-grained images.
This approach enables control over the spatial arrangement of the generated masks and, consequently, the resulting synthetic images.
- Score: 0.0
- License:
- Abstract: Incorporating artificial intelligence (AI) into digital pathology offers promising prospects for automating and enhancing tasks such as image analysis and diagnostic processes. However, the diversity of tissue samples and the necessity for meticulous image labeling often result in biased datasets, constraining the applicability of algorithms trained on them. To harness synthetic histopathological images to cope with this challenge, it is essential not only to produce photorealistic images but also to be able to exert control over the cellular characteristics they depict. Previous studies used methods to generate, from random noise, semantic masks that captured the spatial distribution of the tissue. These masks were then used as a prior for conditional generative approaches to produce photorealistic histopathological images. However, as with many other generative models, this solution exhibits mode collapse as the model fails to capture the full diversity of the underlying data distribution. In this work, we present a pipeline, coined PriorPath, that generates detailed, realistic, semantic masks derived from coarse-grained images delineating tissue regions. This approach enables control over the spatial arrangement of the generated masks and, consequently, the resulting synthetic images. We demonstrated the efficacy of our method across three cancer types, skin, prostate, and lung, showcasing PriorPath's capability to cover the semantic mask space and to provide better similarity to real masks compared to previous methods. Our approach allows for specifying desired tissue distributions and obtaining both photorealistic masks and images within a single platform, thus providing a state-of-the-art, controllable solution for generating histopathological images to facilitate AI for computational pathology.
Related papers
- Mask-guided cross-image attention for zero-shot in-silico histopathologic image generation with a diffusion model [0.10910416614141322]
Diffusion models are the state-of-the-art solution for generating in-silico images.
Appearance transfer diffusion models are designed for natural images.
In computational pathology, specifically in oncology, it is not straightforward to define which objects in an image should be classified as foreground and background.
We contribute to the applicability of appearance transfer models to diffusion-stained images by modifying the appearance transfer guidance to alternate between class-specific AdaIN feature statistics matchings.
arXiv Detail & Related papers (2024-07-16T12:36:26Z) - Image Inpainting via Tractable Steering of Diffusion Models [54.13818673257381]
This paper proposes to exploit the ability of Tractable Probabilistic Models (TPMs) to exactly and efficiently compute the constrained posterior.
Specifically, this paper adopts a class of expressive TPMs termed Probabilistic Circuits (PCs)
We show that our approach can consistently improve the overall quality and semantic coherence of inpainted images with only 10% additional computational overhead.
arXiv Detail & Related papers (2023-11-28T21:14:02Z) - Modality Cycles with Masked Conditional Diffusion for Unsupervised
Anomaly Segmentation in MRI [2.5847188023177403]
Unsupervised anomaly segmentation aims to detect patterns that are distinct from any patterns processed during training.
This paper introduces Masked Modality Cycles with Conditional Diffusion (MMCCD), a method that enables segmentation of anomalies across diverse patterns in multimodal MRI.
We show that our method compares favorably to previous unsupervised approaches based on image reconstruction and denoising with autoencoders and diffusion models.
arXiv Detail & Related papers (2023-08-30T17:16:02Z) - Synthesis of Annotated Colorectal Cancer Tissue Images from Gland Layout [0.0]
Synthetically generated images and annotations are valuable for training and evaluating algorithms in this domain.
We propose an interactive framework generating pairs of realistic colorectal cancer histology images with corresponding glandular masks from glandular structure layouts.
arXiv Detail & Related papers (2023-05-08T19:25:50Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - Improving Masked Autoencoders by Learning Where to Mask [65.89510231743692]
Masked image modeling is a promising self-supervised learning method for visual data.
We present AutoMAE, a framework that uses Gumbel-Softmax to interlink an adversarially-trained mask generator and a mask-guided image modeling process.
In our experiments, AutoMAE is shown to provide effective pretraining models on standard self-supervised benchmarks and downstream tasks.
arXiv Detail & Related papers (2023-03-12T05:28:55Z) - Between Generating Noise and Generating Images: Noise in the Correct
Frequency Improves the Quality of Synthetic Histopathology Images for Digital
Pathology [0.0]
Synthetic images can augment existing datasets, to improve and validate AI algorithms.
We show that introducing random single-pixel noise with the appropriate spatial frequency into a semantic mask can dramatically improve the quality of the synthetic images.
Our work suggests a simple and powerful approach for generating synthetic data on demand to unbias limited datasets.
arXiv Detail & Related papers (2023-02-13T17:49:24Z) - DEPAS: De-novo Pathology Semantic Masks using a Generative Model [0.0]
We introduce a scalable generative model, coined as DEPAS, that captures tissue structure and generates high-resolution semantic masks with state-of-the-art quality.
We demonstrate the ability of DEPAS to generate realistic semantic maps of tissue for three types of organs: skin, prostate, and lung.
arXiv Detail & Related papers (2023-02-13T16:48:33Z) - MaskSketch: Unpaired Structure-guided Masked Image Generation [56.88038469743742]
MaskSketch is an image generation method that allows spatial conditioning of the generation result using a guiding sketch as an extra conditioning signal during sampling.
We show that intermediate self-attention maps of a masked generative transformer encode important structural information of the input image.
Our results show that MaskSketch achieves high image realism and fidelity to the guiding structure.
arXiv Detail & Related papers (2023-02-10T20:27:02Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.