Synthetic Lung X-ray Generation through Cross-Attention and Affinity Transformation
- URL: http://arxiv.org/abs/2503.07209v1
- Date: Mon, 10 Mar 2025 11:48:26 GMT
- Title: Synthetic Lung X-ray Generation through Cross-Attention and Affinity Transformation
- Authors: Ruochen Pi, Lianlei Shan,
- Abstract summary: This paper introduces a new method for the automatic generation of accurate semantic masks from synthetic lung X-ray images.<n>It uses cross-attention mapping between text and image to extend text-driven image synthesis to semantic mask generation.<n>The experimental results demonstrate that segmentation models trained on synthetic data generated using the method are comparable to, and in some cases even better than, models trained on real datasets.
- Score: 4.956977275061966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collecting and annotating medical images is a time-consuming and resource-intensive task. However, generating synthetic data through models such as Diffusion offers a cost-effective alternative. This paper introduces a new method for the automatic generation of accurate semantic masks from synthetic lung X-ray images based on a stable diffusion model trained on text-image pairs. This method uses cross-attention mapping between text and image to extend text-driven image synthesis to semantic mask generation. It employs text-guided cross-attention information to identify specific areas in an image and combines this with innovative techniques to produce high-resolution, class-differentiated pixel masks. This approach significantly reduces the costs associated with data collection and annotation. The experimental results demonstrate that segmentation models trained on synthetic data generated using the method are comparable to, and in some cases even better than, models trained on real datasets. This shows the effectiveness of the method and its potential to revolutionize medical image analysis.
Related papers
- PriorPath: Coarse-To-Fine Approach for Controlled De-Novo Pathology Semantic Masks Generation [0.0]
We present a pipeline, coined PriorPath, that generates detailed, realistic, semantic masks derived from coarse-grained images.
This approach enables control over the spatial arrangement of the generated masks and, consequently, the resulting synthetic images.
arXiv Detail & Related papers (2024-11-25T15:57:19Z) - Seek for Incantations: Towards Accurate Text-to-Image Diffusion
Synthesis through Prompt Engineering [118.53208190209517]
We propose a framework to learn the proper textual descriptions for diffusion models through prompt learning.
Our method can effectively learn the prompts to improve the matches between the input text and the generated images.
arXiv Detail & Related papers (2024-01-12T03:46:29Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
We introduce a novel approach that trains diffusion models conditioned on embeddings from self-supervised learning (SSL)
Our diffusion models successfully project these features back to high-quality histopathology and remote sensing images.
Augmenting real data by generating variations of real images improves downstream accuracy for patch-level and larger, image-scale classification tasks.
arXiv Detail & Related papers (2023-12-12T14:45:45Z) - DiffBoost: Enhancing Medical Image Segmentation via Text-Guided Diffusion Model [3.890243179348094]
Large-scale, big-variant, high-quality data are crucial for developing robust and successful deep-learning models for medical applications.<n>This paper proposes a novel approach by developing controllable diffusion models for medical image synthesis, called DiffBoost.<n>We leverage recent diffusion probabilistic models to generate realistic and diverse synthetic medical image data.
arXiv Detail & Related papers (2023-10-19T16:18:02Z) - MaskDiffusion: Boosting Text-to-Image Consistency with Conditional Mask [84.84034179136458]
A crucial factor leading to the text-image mismatch issue is the inadequate cross-modality relation learning.
We propose an adaptive mask, which is conditioned on the attention maps and the prompt embeddings, to dynamically adjust the contribution of each text token to the image features.
Our method, termed MaskDiffusion, is training-free and hot-pluggable for popular pre-trained diffusion models.
arXiv Detail & Related papers (2023-09-08T15:53:37Z) - From Text to Mask: Localizing Entities Using the Attention of Text-to-Image Diffusion Models [38.14123683674355]
We propose a method to utilize the attention mechanism in the denoising network of text-to-image diffusion models.
We evaluate our method on Pascal VOC 2012 and Microsoft COCO 2014 under weakly-supervised semantic segmentation setting.
Our work reveals a novel way to extract the rich multi-modal knowledge hidden in diffusion models for segmentation.
arXiv Detail & Related papers (2023-09-08T04:10:01Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
Recent advancements in diffusion models have enabled the generation of realistic deepfakes from textual prompts in natural language.
We pioneer a systematic study on deepfake detection generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-04-02T10:25:09Z) - DiffuMask: Synthesizing Images with Pixel-level Annotations for Semantic
Segmentation Using Diffusion Models [68.21154597227165]
We show that it is possible to automatically obtain accurate semantic masks of synthetic images generated by the Off-the-shelf Stable Diffusion model.
Our approach, called DiffuMask, exploits the potential of the cross-attention map between text and image.
arXiv Detail & Related papers (2023-03-21T08:43:15Z) - DEPAS: De-novo Pathology Semantic Masks using a Generative Model [0.0]
We introduce a scalable generative model, coined as DEPAS, that captures tissue structure and generates high-resolution semantic masks with state-of-the-art quality.
We demonstrate the ability of DEPAS to generate realistic semantic maps of tissue for three types of organs: skin, prostate, and lung.
arXiv Detail & Related papers (2023-02-13T16:48:33Z) - METGAN: Generative Tumour Inpainting and Modality Synthesis in Light
Sheet Microscopy [4.872960046536882]
We introduce a novel generative method which leverages real anatomical information to generate realistic image-label pairs of tumours.
We construct a dual-pathway generator, for the anatomical image and label, trained in a cycle-consistent setup, constrained by an independent, pretrained segmentor.
The generated images yield significant quantitative improvement compared to existing methods.
arXiv Detail & Related papers (2021-04-22T11:18:17Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.