Representation Collapsing Problems in Vector Quantization
- URL: http://arxiv.org/abs/2411.16550v1
- Date: Mon, 25 Nov 2024 16:32:29 GMT
- Title: Representation Collapsing Problems in Vector Quantization
- Authors: Wenhao Zhao, Qiran Zou, Rushi Shah, Dianbo Liu,
- Abstract summary: Vector quantization is a technique in machine learning that discretizes continuous representations into a set of discrete vectors.
Despite its prevalence, the characteristics and behaviors of vector quantization in generative models remain largely underexplored.
- Score: 2.2750239768387255
- License:
- Abstract: Vector quantization is a technique in machine learning that discretizes continuous representations into a set of discrete vectors. It is widely employed in tokenizing data representations for large language models, diffusion models, and other generative models. Despite its prevalence, the characteristics and behaviors of vector quantization in generative models remain largely underexplored. In this study, we investigate representation collapse in vector quantization - a critical degradation where codebook tokens or latent embeddings lose their discriminative power by converging to a limited subset of values. This collapse fundamentally compromises the model's ability to capture diverse data patterns. By leveraging both synthetic and real datasets, we identify the severity of each type of collapses and triggering conditions. Our analysis reveals that restricted initialization and limited encoder capacity result in tokens collapse and embeddings collapse. Building on these findings, we propose potential solutions aimed at mitigating each collapse. To the best of our knowledge, this is the first comprehensive study examining representation collapsing problems in vector quantization.
Related papers
- Aliasing and Label-Independent Decomposition of Risk: Beyond the bias-variance trade-off [0.0]
A central problem in data science is to use potentially noisy samples to predict function values for unseen inputs.
We introduce an alternative paradigm called the generalized aliasing decomposition (GAD)
GAD can be explicitly calculated from the relationship between model class and samples without seeing any data labels.
arXiv Detail & Related papers (2024-08-15T17:49:24Z) - Gradient Estimation and Variance Reduction in Stochastic and Deterministic Models [0.0]
This dissertation considers unconstrained, nonlinear optimization problems.
We focus on the gradient itself, that key quantity which enables the solution of such problems.
We present a new framework for calculating the gradient of problems involving both deterministic and elements.
arXiv Detail & Related papers (2024-05-14T14:41:58Z) - Quantization of Large Language Models with an Overdetermined Basis [73.79368761182998]
We introduce an algorithm for data quantization based on the principles of Kashin representation.
Our findings demonstrate that Kashin Quantization achieves competitive or superior quality in model performance.
arXiv Detail & Related papers (2024-04-15T12:38:46Z) - Sample, estimate, aggregate: A recipe for causal discovery foundation models [28.116832159265964]
We train a supervised model that learns to predict a larger causal graph from the outputs of classical causal discovery algorithms run over subsets of variables.
Our approach is enabled by the observation that typical errors in the outputs of classical methods remain comparable across datasets.
Experiments on real and synthetic data demonstrate that this model maintains high accuracy in the face of misspecification or distribution shift.
arXiv Detail & Related papers (2024-02-02T21:57:58Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
We introduce a powerful model-class namely "Denoising Diffusion Probabilistic Models" or DDPMs for chirographic data.
Our model named "ChiroDiff", being non-autoregressive, learns to capture holistic concepts and therefore remains resilient to higher temporal sampling rate.
arXiv Detail & Related papers (2023-04-07T15:17:48Z) - Learning Sparsity of Representations with Discrete Latent Variables [15.05207849434673]
We propose a sparse deep latent generative model SDLGM to explicitly model degree of sparsity.
The resulting sparsity of a representation is not fixed, but fits to the observation itself under the pre-defined restriction.
For inference and learning, we develop an amortized variational method based on MC gradient estimator.
arXiv Detail & Related papers (2023-04-03T12:47:18Z) - Neuro-Symbolic Entropy Regularization [78.16196949641079]
In structured prediction, the goal is to jointly predict many output variables that together encode a structured object.
One approach -- entropy regularization -- posits that decision boundaries should lie in low-probability regions.
We propose a loss, neuro-symbolic entropy regularization, that encourages the model to confidently predict a valid object.
arXiv Detail & Related papers (2022-01-25T06:23:10Z) - Entropy optimized semi-supervised decomposed vector-quantized
variational autoencoder model based on transfer learning for multiclass text
classification and generation [3.9318191265352196]
We propose a semisupervised discrete latent variable model for multi-class text classification and text generation.
The proposed model employs the concept of transfer learning for training a quantized transformer model.
Experimental results indicate that the proposed model has surpassed the state-of-the-art models remarkably.
arXiv Detail & Related papers (2021-11-10T07:07:54Z) - Understanding Neural Abstractive Summarization Models via Uncertainty [54.37665950633147]
seq2seq abstractive summarization models generate text in a free-form manner.
We study the entropy, or uncertainty, of the model's token-level predictions.
We show that uncertainty is a useful perspective for analyzing summarization and text generation models more broadly.
arXiv Detail & Related papers (2020-10-15T16:57:27Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
In this article a new kind of interpretable machine learning method is presented.
It can help to understand the partitioning of the feature space into predicted classes in a classification model using quantile shifts.
Basically, real data points (or specific points of interest) are used and the changes of the prediction after slightly raising or decreasing specific features are observed.
arXiv Detail & Related papers (2020-09-11T16:35:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.