Entropy optimized semi-supervised decomposed vector-quantized
variational autoencoder model based on transfer learning for multiclass text
classification and generation
- URL: http://arxiv.org/abs/2111.08453v1
- Date: Wed, 10 Nov 2021 07:07:54 GMT
- Title: Entropy optimized semi-supervised decomposed vector-quantized
variational autoencoder model based on transfer learning for multiclass text
classification and generation
- Authors: Shivani Malhotra, Vinay Kumar and Alpana Agarwal
- Abstract summary: We propose a semisupervised discrete latent variable model for multi-class text classification and text generation.
The proposed model employs the concept of transfer learning for training a quantized transformer model.
Experimental results indicate that the proposed model has surpassed the state-of-the-art models remarkably.
- Score: 3.9318191265352196
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semisupervised text classification has become a major focus of research over
the past few years. Hitherto, most of the research has been based on supervised
learning, but its main drawback is the unavailability of labeled data samples
in practical applications. It is still a key challenge to train the deep
generative models and learn comprehensive representations without supervision.
Even though continuous latent variables are employed primarily in deep latent
variable models, discrete latent variables, with their enhanced
understandability and better compressed representations, are effectively used
by researchers. In this paper, we propose a semisupervised discrete latent
variable model for multi-class text classification and text generation. The
proposed model employs the concept of transfer learning for training a
quantized transformer model, which is able to learn competently using fewer
labeled instances. The model applies decomposed vector quantization technique
to overcome problems like posterior collapse and index collapse. Shannon
entropy is used for the decomposed sub-encoders, on which a variable
DropConnect is applied, to retain maximum information. Moreover, gradients of
the Loss function are adaptively modified during backpropagation from decoder
to encoder to enhance the performance of the model. Three conventional datasets
of diversified range have been used for validating the proposed model on a
variable number of labeled instances. Experimental results indicate that the
proposed model has surpassed the state-of-the-art models remarkably.
Related papers
- Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
We propose a Hierarchical Dynamic Labeling (HDL) algorithm that does not depend on model predictions and utilizes image embeddings to generate sample labels.
Our approach has the potential to change the paradigm of pseudo-label generation in semi-supervised learning.
arXiv Detail & Related papers (2024-04-26T06:00:27Z) - Learning Active Subspaces and Discovering Important Features with Gaussian Radial Basis Functions Neural Networks [0.0]
We show that precious information is contained in the spectrum of the precision matrix that can be extracted once the training of the model is completed.
We conducted numerical experiments for regression, classification, and feature selection tasks.
Our results demonstrate that the proposed model does not only yield an attractive prediction performance compared to the competitors.
arXiv Detail & Related papers (2023-07-11T09:54:30Z) - Learning Sparse Latent Representations for Generator Model [7.467412443287767]
We present a new unsupervised learning method to enforce sparsity on the latent space for the generator model.
Our model consists of only one top-down generator network that maps the latent variable to the observed data.
arXiv Detail & Related papers (2022-09-20T18:58:24Z) - Bayesian Active Learning for Discrete Latent Variable Models [19.852463786440122]
Active learning seeks to reduce the amount of data required to fit the parameters of a model.
latent variable models play a vital role in neuroscience, psychology, and a variety of other engineering and scientific disciplines.
arXiv Detail & Related papers (2022-02-27T19:07:12Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
We aim at improving data efficiency for both classification and regression setups in deep learning.
To take the power of both worlds, we propose a novel X-model.
X-model plays a minimax game between the feature extractor and task-specific heads.
arXiv Detail & Related papers (2021-10-09T13:56:48Z) - Discrete Auto-regressive Variational Attention Models for Text Modeling [53.38382932162732]
Variational autoencoders (VAEs) have been widely applied for text modeling.
They are troubled by two challenges: information underrepresentation and posterior collapse.
We propose Discrete Auto-regressive Variational Attention Model (DAVAM) to address the challenges.
arXiv Detail & Related papers (2021-06-16T06:36:26Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
In this article a new kind of interpretable machine learning method is presented.
It can help to understand the partitioning of the feature space into predicted classes in a classification model using quantile shifts.
Basically, real data points (or specific points of interest) are used and the changes of the prediction after slightly raising or decreasing specific features are observed.
arXiv Detail & Related papers (2020-09-11T16:35:53Z) - Relaxed-Responsibility Hierarchical Discrete VAEs [3.976291254896486]
We introduce textitRelaxed-Responsibility Vector-Quantisation, a novel way to parameterise discrete latent variables.
We achieve state-of-the-art bits-per-dim results for various standard datasets.
arXiv Detail & Related papers (2020-07-14T19:10:05Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.