OPMOS: Ordered Parallel Multi-Objective Shortest-Path
- URL: http://arxiv.org/abs/2411.16667v1
- Date: Mon, 25 Nov 2024 18:53:49 GMT
- Title: OPMOS: Ordered Parallel Multi-Objective Shortest-Path
- Authors: Leo Gold, Adam Bienkowski, David Sidoti, Krishna Pattipati, Omer Khan,
- Abstract summary: The Multi-Objective Shortest-Path (MOS) problem finds a set of Pareto-optimal solutions from a start node to a destination node in a multi-attribute graph.
A generalized MOS algorithm maintains a "frontier" of partial paths at each node and performs ordered processing.
The OPMOS framework, proposed herein, unlocks ordered parallelism and efficiently exploits the concurrent execution of multiple paths in MOS.
- Score: 0.7864304771129751
- License:
- Abstract: The Multi-Objective Shortest-Path (MOS) problem finds a set of Pareto-optimal solutions from a start node to a destination node in a multi-attribute graph. To solve the NP-hard MOS problem, the literature explores heuristic multi-objective A*-style algorithmic approaches. A generalized MOS algorithm maintains a "frontier" of partial paths at each node and performs ordered processing to ensure that Pareto-optimal paths are generated to reach the goal node. The algorithm becomes computationally intractable as the number of objectives increases due to a rapid increase in the non-dominated paths, and the concomitantly large increase in Pareto-optimal solutions. While prior works have focused on algorithmic methods to reduce the complexity, we tackle this challenge by exploiting parallelism using an algorithm-architecture approach. The key insight is that MOS algorithms rely on the ordered execution of partial paths to maintain high work efficiency. The OPMOS framework, proposed herein, unlocks ordered parallelism and efficiently exploits the concurrent execution of multiple paths in MOS. Experimental evaluation using the NVIDIA GH200 Superchip shows the performance scaling potential of OPMOS on work efficiency and parallelism using a real-world application to ship routing.
Related papers
- LLM-A*: Large Language Model Enhanced Incremental Heuristic Search on Path Planning [91.95362946266577]
Path planning is a fundamental scientific problem in robotics and autonomous navigation.
Traditional algorithms like A* and its variants are capable of ensuring path validity but suffer from significant computational and memory inefficiencies as the state space grows.
We propose a new LLM based route planning method that synergistically combines the precise pathfinding capabilities of A* with the global reasoning capability of LLMs.
This hybrid approach aims to enhance pathfinding efficiency in terms of time and space complexity while maintaining the integrity of path validity, especially in large-scale scenarios.
arXiv Detail & Related papers (2024-06-20T01:24:30Z) - Optimizing Tensor Contraction Paths: A Greedy Algorithm Approach With Improved Cost Functions [1.3812010983144802]
We introduce a novel approach based on the greedy algorithm by opt_einsum that computes efficient contraction paths in less time.
With our approach, we are even able to compute paths for large problems where modern algorithms fail.
arXiv Detail & Related papers (2024-05-08T09:25:39Z) - A Conflict-Aware Optimal Goal Assignment Algorithm for Multi-Robot
Systems [6.853165736531941]
A multi-robot application aims to assign a unique goal to each robot while ensuring collision-free paths.
We propose an efficient conflict-guided method to compute the next best assignment.
We extensively evaluate our algorithm for up to a hundred robots on several benchmark workspaces.
arXiv Detail & Related papers (2024-02-19T19:04:19Z) - Enhanced Multi-Objective A* with Partial Expansion [22.45142249108214]
Multi-Objective Shortest Path Problem (MO-SPP), typically posed on a graph, determines a set of paths while optimizing multiple objectives.
To address this problem, several Multi-Objective A* (MOA*) algorithms were recently developed to quickly compute solutions with quality guarantees.
This work thus aims at reducing the high memory consumption of MOA* with little increase in the runtime.
arXiv Detail & Related papers (2022-12-06T05:48:11Z) - Entropic Neural Optimal Transport via Diffusion Processes [105.34822201378763]
We propose a novel neural algorithm for the fundamental problem of computing the entropic optimal transport (EOT) plan between continuous probability distributions.
Our algorithm is based on the saddle point reformulation of the dynamic version of EOT which is known as the Schr"odinger Bridge problem.
In contrast to the prior methods for large-scale EOT, our algorithm is end-to-end and consists of a single learning step.
arXiv Detail & Related papers (2022-11-02T14:35:13Z) - Arch-Graph: Acyclic Architecture Relation Predictor for
Task-Transferable Neural Architecture Search [96.31315520244605]
Arch-Graph is a transferable NAS method that predicts task-specific optimal architectures.
We show Arch-Graph's transferability and high sample efficiency across numerous tasks.
It is able to find top 0.16% and 0.29% architectures on average on two search spaces under the budget of only 50 models.
arXiv Detail & Related papers (2022-04-12T16:46:06Z) - Multi-Robot Active Mapping via Neural Bipartite Graph Matching [49.72892929603187]
We study the problem of multi-robot active mapping, which aims for complete scene map construction in minimum time steps.
The key to this problem lies in the goal position estimation to enable more efficient robot movements.
We propose a novel algorithm, namely NeuralCoMapping, which takes advantage of both approaches.
arXiv Detail & Related papers (2022-03-30T14:03:17Z) - Enhanced Multi-Objective A* Using Balanced Binary Search Trees [35.63053398687847]
Multi-objective A* (MOA*) like algorithms maintain a "frontier" set at any node during the search to keep track of the non-dominated paths that reach that node.
We introduce a new method to efficiently maintain these frontiers for multiple objectives by leveraging balanced binary search trees.
arXiv Detail & Related papers (2022-02-18T02:54:58Z) - A Simple Evolutionary Algorithm for Multi-modal Multi-objective
Optimization [0.0]
We introduce a steady-state evolutionary algorithm for solving multi-modal, multi-objective optimization problems (MMOPs)
We report its performance on 21 MMOPs from various test suites that are widely used for benchmarking using a low computational budget of 1000 function evaluations.
arXiv Detail & Related papers (2022-01-18T03:31:11Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.