Factorized Visual Tokenization and Generation
- URL: http://arxiv.org/abs/2411.16681v1
- Date: Mon, 25 Nov 2024 18:59:53 GMT
- Title: Factorized Visual Tokenization and Generation
- Authors: Zechen Bai, Jianxiong Gao, Ziteng Gao, Pichao Wang, Zheng Zhang, Tong He, Mike Zheng Shou,
- Abstract summary: We introduce Factorized Quantization (FQ), a novel approach that revitalizes VQ-based tokenizers by decomposing a large codebook into multiple independent sub-codebooks.
This factorization reduces the lookup complexity of large codebooks, enabling more efficient and scalable visual tokenization.
Experiments show that the proposed FQGAN model substantially improves the reconstruction quality of visual tokenizers, achieving state-of-the-art performance.
- Score: 37.56136469262736
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Visual tokenizers are fundamental to image generation. They convert visual data into discrete tokens, enabling transformer-based models to excel at image generation. Despite their success, VQ-based tokenizers like VQGAN face significant limitations due to constrained vocabulary sizes. Simply expanding the codebook often leads to training instability and diminishing performance gains, making scalability a critical challenge. In this work, we introduce Factorized Quantization (FQ), a novel approach that revitalizes VQ-based tokenizers by decomposing a large codebook into multiple independent sub-codebooks. This factorization reduces the lookup complexity of large codebooks, enabling more efficient and scalable visual tokenization. To ensure each sub-codebook captures distinct and complementary information, we propose a disentanglement regularization that explicitly reduces redundancy, promoting diversity across the sub-codebooks. Furthermore, we integrate representation learning into the training process, leveraging pretrained vision models like CLIP and DINO to infuse semantic richness into the learned representations. This design ensures our tokenizer captures diverse semantic levels, leading to more expressive and disentangled representations. Experiments show that the proposed FQGAN model substantially improves the reconstruction quality of visual tokenizers, achieving state-of-the-art performance. We further demonstrate that this tokenizer can be effectively adapted into auto-regressive image generation. https://showlab.github.io/FQGAN
Related papers
- Harmonizing Visual Representations for Unified Multimodal Understanding and Generation [53.01486796503091]
We present emphHarmon, a unified autoregressive framework that harmonizes understanding and generation tasks with a shared MAR encoder.
Harmon achieves state-of-the-art image generation results on the GenEval, MJHQ30K and WISE benchmarks.
arXiv Detail & Related papers (2025-03-27T20:50:38Z) - Unified Autoregressive Visual Generation and Understanding with Continuous Tokens [52.21981295470491]
We present UniFluid, a unified autoregressive framework for joint visual generation and understanding.
Our unified autoregressive architecture processes multimodal image and text inputs, generating discrete tokens for text and continuous tokens for image.
We find though there is an inherent trade-off between the image generation and understanding task, a carefully tuned training recipe enables them to improve each other.
arXiv Detail & Related papers (2025-03-17T17:58:30Z) - SemHiTok: A Unified Image Tokenizer via Semantic-Guided Hierarchical Codebook for Multimodal Understanding and Generation [73.98487014058286]
SemHiTok is a unified image tokenizer via Semantic-Guided Hierarchical codebook.
We show that SemHiTok achieves excellent rFID score at 256X256resolution compared to other unified tokenizers.
arXiv Detail & Related papers (2025-03-09T20:42:34Z) - Frequency Autoregressive Image Generation with Continuous Tokens [31.833852108014312]
We introduce the frequency progressive autoregressive (textbfFAR) paradigm and instantiate FAR with the continuous tokenizer.
We demonstrate the efficacy of FAR through comprehensive experiments on the ImageNet dataset.
arXiv Detail & Related papers (2025-03-07T10:34:04Z) - Scalable Image Tokenization with Index Backpropagation Quantization [74.15447383432262]
Index Backpropagation Quantization (IBQ) is a new VQ method for the joint optimization of all codebook embeddings and the visual encoder.
IBQ enables scalable training of visual tokenizers and, for the first time, achieves a large-scale codebook with high dimension ($256$) and high utilization.
arXiv Detail & Related papers (2024-12-03T18:59:10Z) - Image Understanding Makes for A Good Tokenizer for Image Generation [62.875788091204626]
We introduce a token-based IG framework, which relies on effective tokenizers to project images into token sequences.
We show that tokenizers with strong IU capabilities achieve superior IG performance across a variety of metrics, datasets, tasks, and proposal networks.
arXiv Detail & Related papers (2024-11-07T03:55:23Z) - SGC-VQGAN: Towards Complex Scene Representation via Semantic Guided Clustering Codebook [9.993066868670283]
We introduce SGC-VQGAN through Semantic Online Clustering method to enhance token semantics through Consistent Semantic Learning.
Our approach constructs a temporospatially consistent semantic codebook, addressing issues of codebook collapse and imbalanced token semantics.
arXiv Detail & Related papers (2024-09-09T23:12:43Z) - UniCode: Learning a Unified Codebook for Multimodal Large Language Models [33.48624855154342]
We propose textbfUniCode, a novel approach within the domain of multimodal large language models (MLLMs)
UniCode learns a unified codebook to efficiently tokenize visual, text, and potentially other types of signals.
Despite using significantly fewer parameters and less data during training, Unicode demonstrates promising capabilities in visual reconstruction and generation.
arXiv Detail & Related papers (2024-03-14T03:29:58Z) - Finite Scalar Quantization: VQ-VAE Made Simple [26.351016719675766]
We propose to replace vector quantization (VQ) in the latent representation of VQ-VAEs with a simple scheme termed finite scalar quantization (FSQ)
By appropriately choosing the number of dimensions and values each dimension can take, we obtain the same codebook size as in VQ.
We employ FSQ with MaskGIT for image generation, and with UViM for depth estimation, colorization, and panoptic segmentation.
arXiv Detail & Related papers (2023-09-27T09:13:40Z) - Unified Language-Vision Pretraining in LLM with Dynamic Discrete Visual Tokenization [52.935150075484074]
We introduce a well-designed visual tokenizer to translate the non-linguistic image into a sequence of discrete tokens like a foreign language.
The resulting visual tokens encompass high-level semantics worthy of a word and also support dynamic sequence length varying from the image.
This unification empowers LaVIT to serve as an impressive generalist interface to understand and generate multi-modal content simultaneously.
arXiv Detail & Related papers (2023-09-09T03:01:38Z) - Not All Image Regions Matter: Masked Vector Quantization for
Autoregressive Image Generation [78.13793505707952]
Existing autoregressive models follow the two-stage generation paradigm that first learns a codebook in the latent space for image reconstruction and then completes the image generation autoregressively based on the learned codebook.
We propose a novel two-stage framework, which consists of Masked Quantization VAE (MQ-VAE) Stack model from modeling redundancy.
arXiv Detail & Related papers (2023-05-23T02:15:53Z) - Masked Autoencoders are Robust Data Augmentors [90.34825840657774]
Regularization techniques like image augmentation are necessary for deep neural networks to generalize well.
We propose a novel perspective of augmentation to regularize the training process.
We show that utilizing such model-based nonlinear transformation as data augmentation can improve high-level recognition tasks.
arXiv Detail & Related papers (2022-06-10T02:41:48Z) - Less is More: Pay Less Attention in Vision Transformers [61.05787583247392]
Less attention vIsion Transformer builds upon the fact that convolutions, fully-connected layers, and self-attentions have almost equivalent mathematical expressions for processing image patch sequences.
The proposed LIT achieves promising performance on image recognition tasks, including image classification, object detection and instance segmentation.
arXiv Detail & Related papers (2021-05-29T05:26:07Z) - Robust Training of Vector Quantized Bottleneck Models [21.540133031071438]
We demonstrate methods for reliable and efficient training of discrete representation using Vector-Quantized Variational Auto-Encoder models (VQ-VAEs)
For unsupervised representation learning, they became viable alternatives to continuous latent variable models such as the Variational Auto-Encoder (VAE)
arXiv Detail & Related papers (2020-05-18T08:23:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.