TSkips: Efficiency Through Explicit Temporal Delay Connections in Spiking Neural Networks
- URL: http://arxiv.org/abs/2411.16711v1
- Date: Fri, 22 Nov 2024 18:58:18 GMT
- Title: TSkips: Efficiency Through Explicit Temporal Delay Connections in Spiking Neural Networks
- Authors: Prajna G. Malettira, Shubham Negi, Wachirawit Ponghiran, Kaushik Roy,
- Abstract summary: We propose TSkips, augmenting Spiking Neural Networks with forward and backward skip connections that incorporate explicit temporal delays.
These connections capture long-term-temporal architectures and facilitate better spike flow over long sequences.
We demonstrate the effectiveness of our approach on four event-based datasets.
- Score: 8.13696328386179
- License:
- Abstract: Spiking Neural Networks (SNNs) with their bio-inspired Leaky Integrate-and-Fire (LIF) neurons inherently capture temporal information. This makes them well-suited for sequential tasks like processing event-based data from Dynamic Vision Sensors (DVS) and event-based speech tasks. Harnessing the temporal capabilities of SNNs requires mitigating vanishing spikes during training, capturing spatio-temporal patterns and enhancing precise spike timing. To address these challenges, we propose TSkips, augmenting SNN architectures with forward and backward skip connections that incorporate explicit temporal delays. These connections capture long-term spatio-temporal dependencies and facilitate better spike flow over long sequences. The introduction of TSkips creates a vast search space of possible configurations, encompassing skip positions and time delay values. To efficiently navigate this search space, this work leverages training-free Neural Architecture Search (NAS) to identify optimal network structures and corresponding delays. We demonstrate the effectiveness of our approach on four event-based datasets: DSEC-flow for optical flow estimation, DVS128 Gesture for hand gesture recognition and Spiking Heidelberg Digits (SHD) and Spiking Speech Commands (SSC) for speech recognition. Our method achieves significant improvements across these datasets: up to 18% reduction in Average Endpoint Error (AEE) on DSEC-flow, 8% increase in classification accuracy on DVS128 Gesture, and up to 8% and 16% higher classification accuracy on SHD and SSC, respectively.
Related papers
- Towards Low-latency Event-based Visual Recognition with Hybrid Step-wise Distillation Spiking Neural Networks [50.32980443749865]
Spiking neural networks (SNNs) have garnered significant attention for their low power consumption and high biologicalability.
Current SNNs struggle to balance accuracy and latency in neuromorphic datasets.
We propose Step-wise Distillation (HSD) method, tailored for neuromorphic datasets.
arXiv Detail & Related papers (2024-09-19T06:52:34Z) - Low Latency of object detection for spikng neural network [3.404826786562694]
Spiking Neural Networks are well-suited for edge AI applications due to their binary spike nature.
In this paper, we focus on generating highly accurate and low-latency SNNs specifically for object detection.
arXiv Detail & Related papers (2023-09-27T10:26:19Z) - Adaptive Axonal Delays in feedforward spiking neural networks for
accurate spoken word recognition [4.018601183900039]
Spiking neural networks (SNN) are a promising research avenue for building accurate and efficient automatic speech recognition systems.
Recent advances in audio-to-spike encoding and training algorithms enable SNN to be applied in practical tasks.
Our work illustrates the potential of training axonal delays for tasks with complex temporal structures.
arXiv Detail & Related papers (2023-02-16T22:19:04Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models.
Recent progress in training methods has enabled successful deep SNNs on large-scale tasks with low latency.
We propose online training through time (OTTT) for SNNs, which is derived from BPTT to enable forward-in-time learning.
arXiv Detail & Related papers (2022-10-09T07:47:56Z) - Adaptive-SpikeNet: Event-based Optical Flow Estimation using Spiking
Neural Networks with Learnable Neuronal Dynamics [6.309365332210523]
Spiking Neural Networks (SNNs) with their neuro-inspired event-driven processing can efficiently handle asynchronous data.
We propose an adaptive fully-spiking framework with learnable neuronal dynamics to alleviate the spike vanishing problem.
Our experiments on datasets show an average reduction of 13% in average endpoint error (AEE) compared to state-of-the-art ANNs.
arXiv Detail & Related papers (2022-09-21T21:17:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Ultra-low Latency Spiking Neural Networks with Spatio-Temporal
Compression and Synaptic Convolutional Block [4.081968050250324]
Spiking neural networks (SNNs) have neuro-temporal information capability, low processing feature, and high biological plausibility.
Neuro-MNIST, CIFAR10-S, DVS128 gesture datasets need to aggregate individual events into frames with a higher temporal resolution for event stream classification.
We propose a processing-temporal compression method to aggregate individual events into a few time steps of NIST current to reduce the training and inference latency.
arXiv Detail & Related papers (2022-03-18T15:14:13Z) - Neural Architecture Search For LF-MMI Trained Time Delay Neural Networks [61.76338096980383]
A range of neural architecture search (NAS) techniques are used to automatically learn two types of hyper- parameters of state-of-the-art factored time delay neural networks (TDNNs)
These include the DARTS method integrating architecture selection with lattice-free MMI (LF-MMI) TDNN training.
Experiments conducted on a 300-hour Switchboard corpus suggest the auto-configured systems consistently outperform the baseline LF-MMI TDNN systems.
arXiv Detail & Related papers (2020-07-17T08:32:11Z) - Object Tracking through Residual and Dense LSTMs [67.98948222599849]
Deep learning-based trackers based on LSTMs (Long Short-Term Memory) recurrent neural networks have emerged as a powerful alternative.
DenseLSTMs outperform Residual and regular LSTM, and offer a higher resilience to nuisances.
Our case study supports the adoption of residual-based RNNs for enhancing the robustness of other trackers.
arXiv Detail & Related papers (2020-06-22T08:20:17Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.