Steering Away from Harm: An Adaptive Approach to Defending Vision Language Model Against Jailbreaks
- URL: http://arxiv.org/abs/2411.16721v1
- Date: Sat, 23 Nov 2024 02:17:17 GMT
- Title: Steering Away from Harm: An Adaptive Approach to Defending Vision Language Model Against Jailbreaks
- Authors: Han Wang, Gang Wang, Huan Zhang,
- Abstract summary: Vision Language Models (VLMs) can produce unintended and harmful content when exposed to adversarial attacks.
Existing defenses, such as input preprocessing, adversarial training, and response evaluation-based methods, are often impractical for real-world deployment.
We propose ASTRA, an efficient and effective defense by adaptively steering models away from adversarial feature directions to resist VLM attacks.
- Score: 16.508109544083496
- License:
- Abstract: Vision Language Models (VLMs) can produce unintended and harmful content when exposed to adversarial attacks, particularly because their vision capabilities create new vulnerabilities. Existing defenses, such as input preprocessing, adversarial training, and response evaluation-based methods, are often impractical for real-world deployment due to their high costs. To address this challenge, we propose ASTRA, an efficient and effective defense by adaptively steering models away from adversarial feature directions to resist VLM attacks. Our key procedures involve finding transferable steering vectors representing the direction of harmful response and applying adaptive activation steering to remove these directions at inference time. To create effective steering vectors, we randomly ablate the visual tokens from the adversarial images and identify those most strongly associated with jailbreaks. These tokens are then used to construct steering vectors. During inference, we perform the adaptive steering method that involves the projection between the steering vectors and calibrated activation, resulting in little performance drops on benign inputs while strongly avoiding harmful outputs under adversarial inputs. Extensive experiments across multiple models and baselines demonstrate our state-of-the-art performance and high efficiency in mitigating jailbreak risks. Additionally, ASTRA exhibits good transferability, defending against both unseen attacks at design time (i.e., structured-based attacks) and adversarial images from diverse distributions.
Related papers
- Improving Alignment and Robustness with Circuit Breakers [40.4558948850276]
We present an approach that interrupts the models as they respond with harmful outputs with "circuit breakers"
As an alternative to refusal training and adversarial training, circuit-breaking directly controls the representations that are responsible for harmful outputs.
We extend our approach to AI agents, demonstrating considerable reductions in the rate of harmful actions when they are under attack.
arXiv Detail & Related papers (2024-06-06T17:57:04Z) - Towards Transferable Attacks Against Vision-LLMs in Autonomous Driving with Typography [21.632703081999036]
Vision-Large-Language-Models (Vision-LLMs) are increasingly being integrated into autonomous driving (AD) systems.
We propose to leverage typographic attacks against AD systems relying on the decision-making capabilities of Vision-LLMs.
arXiv Detail & Related papers (2024-05-23T04:52:02Z) - VL-Trojan: Multimodal Instruction Backdoor Attacks against
Autoregressive Visual Language Models [65.23688155159398]
Autoregressive Visual Language Models (VLMs) showcase impressive few-shot learning capabilities in a multimodal context.
Recently, multimodal instruction tuning has been proposed to further enhance instruction-following abilities.
Adversaries can implant a backdoor by injecting poisoned samples with triggers embedded in instructions or images.
We propose a multimodal instruction backdoor attack, namely VL-Trojan.
arXiv Detail & Related papers (2024-02-21T14:54:30Z) - InferAligner: Inference-Time Alignment for Harmlessness through
Cross-Model Guidance [56.184255657175335]
We develop textbfInferAligner, a novel inference-time alignment method that utilizes cross-model guidance for harmlessness alignment.
Experimental results show that our method can be very effectively applied to domain-specific models in finance, medicine, and mathematics.
It significantly diminishes the Attack Success Rate (ASR) of both harmful instructions and jailbreak attacks, while maintaining almost unchanged performance in downstream tasks.
arXiv Detail & Related papers (2024-01-20T10:41:03Z) - Pre-trained Trojan Attacks for Visual Recognition [106.13792185398863]
Pre-trained vision models (PVMs) have become a dominant component due to their exceptional performance when fine-tuned for downstream tasks.
We propose the Pre-trained Trojan attack, which embeds backdoors into a PVM, enabling attacks across various downstream vision tasks.
We highlight the challenges posed by cross-task activation and shortcut connections in successful backdoor attacks.
arXiv Detail & Related papers (2023-12-23T05:51:40Z) - SA-Attack: Improving Adversarial Transferability of Vision-Language
Pre-training Models via Self-Augmentation [56.622250514119294]
In contrast to white-box adversarial attacks, transfer attacks are more reflective of real-world scenarios.
We propose a self-augment-based transfer attack method, termed SA-Attack.
arXiv Detail & Related papers (2023-12-08T09:08:50Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z) - Trojan Activation Attack: Red-Teaming Large Language Models using Activation Steering for Safety-Alignment [31.24530091590395]
We study an attack scenario called Trojan Activation Attack (TA2), which injects trojan steering vectors into the activation layers of Large Language Models.
Our experiment results show that TA2 is highly effective and adds little or no overhead to attack efficiency.
arXiv Detail & Related papers (2023-11-15T23:07:40Z) - Exploring Adversarial Robustness of Multi-Sensor Perception Systems in
Self Driving [87.3492357041748]
In this paper, we showcase practical susceptibilities of multi-sensor detection by placing an adversarial object on top of a host vehicle.
Our experiments demonstrate that successful attacks are primarily caused by easily corrupted image features.
Towards more robust multi-modal perception systems, we show that adversarial training with feature denoising can boost robustness to such attacks significantly.
arXiv Detail & Related papers (2021-01-17T21:15:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.