Improving Alignment and Robustness with Circuit Breakers
- URL: http://arxiv.org/abs/2406.04313v4
- Date: Fri, 12 Jul 2024 16:51:07 GMT
- Title: Improving Alignment and Robustness with Circuit Breakers
- Authors: Andy Zou, Long Phan, Justin Wang, Derek Duenas, Maxwell Lin, Maksym Andriushchenko, Rowan Wang, Zico Kolter, Matt Fredrikson, Dan Hendrycks,
- Abstract summary: We present an approach that interrupts the models as they respond with harmful outputs with "circuit breakers"
As an alternative to refusal training and adversarial training, circuit-breaking directly controls the representations that are responsible for harmful outputs.
We extend our approach to AI agents, demonstrating considerable reductions in the rate of harmful actions when they are under attack.
- Score: 40.4558948850276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI systems can take harmful actions and are highly vulnerable to adversarial attacks. We present an approach, inspired by recent advances in representation engineering, that interrupts the models as they respond with harmful outputs with "circuit breakers." Existing techniques aimed at improving alignment, such as refusal training, are often bypassed. Techniques such as adversarial training try to plug these holes by countering specific attacks. As an alternative to refusal training and adversarial training, circuit-breaking directly controls the representations that are responsible for harmful outputs in the first place. Our technique can be applied to both text-only and multimodal language models to prevent the generation of harmful outputs without sacrificing utility -- even in the presence of powerful unseen attacks. Notably, while adversarial robustness in standalone image recognition remains an open challenge, circuit breakers allow the larger multimodal system to reliably withstand image "hijacks" that aim to produce harmful content. Finally, we extend our approach to AI agents, demonstrating considerable reductions in the rate of harmful actions when they are under attack. Our approach represents a significant step forward in the development of reliable safeguards to harmful behavior and adversarial attacks.
Related papers
- Steering Away from Harm: An Adaptive Approach to Defending Vision Language Model Against Jailbreaks [16.508109544083496]
Vision Language Models (VLMs) can produce unintended and harmful content when exposed to adversarial attacks.
Existing defenses, such as input preprocessing, adversarial training, and response evaluation-based methods, are often impractical for real-world deployment.
We propose ASTRA, an efficient and effective defense by adaptively steering models away from adversarial feature directions to resist VLM attacks.
arXiv Detail & Related papers (2024-11-23T02:17:17Z) - An Adversarial Perspective on Machine Unlearning for AI Safety [22.639683142004372]
This work challenges the fundamental differences between unlearning and traditional safety post-training.
We demonstrate that existing jailbreak methods, previously reported as ineffective against unlearning, can be successful when applied carefully.
For instance, we show that finetuning on 10 unrelated examples or removing specific directions in the activation space can recover most hazardous capabilities for models edited with RMU.
arXiv Detail & Related papers (2024-09-26T16:32:19Z) - A Novel Approach to Guard from Adversarial Attacks using Stable Diffusion [0.0]
Our proposal suggests a different approach to the AI Guardian framework.
Instead of including adversarial examples in the training process, we propose training the AI system without them.
This aims to create a system that is inherently resilient to a wider range of attacks.
arXiv Detail & Related papers (2024-05-03T04:08:15Z) - Multi-granular Adversarial Attacks against Black-box Neural Ranking Models [111.58315434849047]
We create high-quality adversarial examples by incorporating multi-granular perturbations.
We transform the multi-granular attack into a sequential decision-making process.
Our attack method surpasses prevailing baselines in both attack effectiveness and imperceptibility.
arXiv Detail & Related papers (2024-04-02T02:08:29Z) - Pre-trained Trojan Attacks for Visual Recognition [106.13792185398863]
Pre-trained vision models (PVMs) have become a dominant component due to their exceptional performance when fine-tuned for downstream tasks.
We propose the Pre-trained Trojan attack, which embeds backdoors into a PVM, enabling attacks across various downstream vision tasks.
We highlight the challenges posed by cross-task activation and shortcut connections in successful backdoor attacks.
arXiv Detail & Related papers (2023-12-23T05:51:40Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
We propose a novel approach that generates adversarial attacks in a mutual-modality optimization scheme.
Our approach outperforms state-of-the-art attack methods and can be readily deployed as a plug-and-play solution.
arXiv Detail & Related papers (2023-12-20T05:06:01Z) - Robust Safety Classifier for Large Language Models: Adversarial Prompt
Shield [7.5520641322945785]
Large Language Models' safety remains a critical concern due to their vulnerability to adversarial attacks.
We introduce the Adversarial Prompt Shield (APS), a lightweight model that excels in detection accuracy and demonstrates resilience against adversarial prompts.
We also propose novel strategies for autonomously generating adversarial training datasets.
arXiv Detail & Related papers (2023-10-31T22:22:10Z) - Adversarial Visual Robustness by Causal Intervention [56.766342028800445]
Adversarial training is the de facto most promising defense against adversarial examples.
Yet, its passive nature inevitably prevents it from being immune to unknown attackers.
We provide a causal viewpoint of adversarial vulnerability: the cause is the confounder ubiquitously existing in learning.
arXiv Detail & Related papers (2021-06-17T14:23:54Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.