An investigation into the performances of the Current state-of-the-art Naive Bayes, Non-Bayesian and Deep Learning Based Classifier for Phishing Detection: A Survey
- URL: http://arxiv.org/abs/2411.16751v1
- Date: Sun, 24 Nov 2024 05:20:09 GMT
- Title: An investigation into the performances of the Current state-of-the-art Naive Bayes, Non-Bayesian and Deep Learning Based Classifier for Phishing Detection: A Survey
- Authors: Tosin Ige, Christopher Kiekintveld, Aritran Piplai, Amy Waggler, Olukunle Kolade, Bolanle Hafiz Matti,
- Abstract summary: Phishing is one of the most effective ways in which cybercriminals get sensitive details from potential victims.
In this research, we did a comprehensive review of current state-of-the-art machine learning and deep learning phishing detection techniques.
- Score: 0.9567504785687562
- License:
- Abstract: Phishing is one of the most effective ways in which cybercriminals get sensitive details such as credentials for online banking, digital wallets, state secrets, and many more from potential victims. They do this by spamming users with malicious URLs with the sole purpose of tricking them into divulging sensitive information which is later used for various cybercrimes. In this research, we did a comprehensive review of current state-of-the-art machine learning and deep learning phishing detection techniques to expose their vulnerabilities and future research direction. For better analysis and observation, we split machine learning techniques into Bayesian, non-Bayesian, and deep learning. We reviewed the most recent advances in Bayesian and non-Bayesian-based classifiers before exploiting their corresponding weaknesses to indicate future research direction. While exploiting weaknesses in both Bayesian and non-Bayesian classifiers, we also compared each performance with a deep learning classifier. For a proper review of deep learning-based classifiers, we looked at Recurrent Neural Networks (RNN), Convolutional Neural Networks (CNN), and Long Short Term Memory Networks (LSTMs). We did an empirical analysis to evaluate the performance of each classifier along with many of the proposed state-of-the-art anti-phishing techniques to identify future research directions, we also made a series of proposals on how the performance of the under-performing algorithm can improved in addition to a two-stage prediction model
Related papers
- An Investigation into the Performances of the State-of-the-art Machine Learning Approaches for Various Cyber-attack Detection: A Survey [1.1881667010191568]
We analyzed the suitability of each of the current state-of-the-art machine learning models for various cyberattack detection from the past 5 years.
We also reviewed the suitability, effeciency and limitations of recent research on state-of-the-art classifiers and novel frameworks in the detection of differnet cyberattacks.
arXiv Detail & Related papers (2024-02-26T22:04:25Z) - Deep Learning Algorithms Used in Intrusion Detection Systems -- A Review [0.0]
This review paper studies recent advancements in the application of deep learning techniques, including CNN, Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), autoencoders (AE), Multi-Layer Perceptrons (MLP), Self-Normalizing Networks (SNN) and hybrid models, within network intrusion detection systems.
arXiv Detail & Related papers (2024-02-26T20:57:35Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
Adrial attacks and defenses in machine learning and deep neural network have been gaining significant attention.
This survey provides a comprehensive overview of the recent advancements in the field of adversarial attack and defense techniques.
New avenues of attack are also explored, including search-based, decision-based, drop-based, and physical-world attacks.
arXiv Detail & Related papers (2023-03-11T04:19:31Z) - Backdoor Attack Detection in Computer Vision by Applying Matrix
Factorization on the Weights of Deep Networks [6.44397009982949]
We introduce a novel method for backdoor detection that extracts features from pre-trained DNN's weights.
In comparison to other detection techniques, this has a number of benefits, such as not requiring any training data.
Our method outperforms the competing algorithms in terms of efficiency and is more accurate, helping to ensure the safe application of deep learning and AI.
arXiv Detail & Related papers (2022-12-15T20:20:18Z) - Initial Study into Application of Feature Density and
Linguistically-backed Embedding to Improve Machine Learning-based
Cyberbullying Detection [54.83707803301847]
The research was conducted on a Formspring dataset provided in a Kaggle competition on automatic cyberbullying detection.
The study confirmed the effectiveness of Neural Networks in cyberbullying detection and the correlation between classifier performance and Feature Density.
arXiv Detail & Related papers (2022-06-04T03:17:15Z) - Efficient and Robust Classification for Sparse Attacks [34.48667992227529]
We consider perturbations bounded by the $ell$--norm, which have been shown as effective attacks in the domains of image-recognition, natural language processing, and malware-detection.
We propose a novel defense method that consists of "truncation" and "adrial training"
Motivated by the insights we obtain, we extend these components to neural network classifiers.
arXiv Detail & Related papers (2022-01-23T21:18:17Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
This paper presents a visual framework to investigate neural network models subjected to adversarial examples.
We show how observing these elements can quickly pinpoint exploited areas in a model.
arXiv Detail & Related papers (2021-03-18T13:04:21Z) - Lifelong Object Detection [28.608982224098565]
We leverage the fact that new training classes arrive in a sequential manner and incrementally refine the model.
We consider the representative object detector, Faster R-CNN, for both accurate and efficient prediction.
arXiv Detail & Related papers (2020-09-02T15:08:51Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Binary Neural Networks: A Survey [126.67799882857656]
The binary neural network serves as a promising technique for deploying deep models on resource-limited devices.
The binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network.
We present a survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error.
arXiv Detail & Related papers (2020-03-31T16:47:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.