Bundle Adjusted Gaussian Avatars Deblurring
- URL: http://arxiv.org/abs/2411.16758v1
- Date: Sun, 24 Nov 2024 10:03:24 GMT
- Title: Bundle Adjusted Gaussian Avatars Deblurring
- Authors: Muyao Niu, Yifan Zhan, Qingtian Zhu, Zhuoxiao Li, Wei Wang, Zhihang Zhong, Xiao Sun, Yinqiang Zheng,
- Abstract summary: We propose a 3D-aware, physics-oriented model of blur formation attributable to human movement and a 3D human motion model to clarify ambiguities found in motion-induced blurry images.
We have established benchmarks for this task through a synthetic dataset derived from existing multi-view captures, alongside a real-captured dataset acquired through a 360-degree synchronous hybrid-exposure camera system.
- Score: 31.718130377229482
- License:
- Abstract: The development of 3D human avatars from multi-view videos represents a significant yet challenging task in the field. Recent advancements, including 3D Gaussian Splattings (3DGS), have markedly progressed this domain. Nonetheless, existing techniques necessitate the use of high-quality sharp images, which are often impractical to obtain in real-world settings due to variations in human motion speed and intensity. In this study, we attempt to explore deriving sharp intrinsic 3D human Gaussian avatars from blurry video footage in an end-to-end manner. Our approach encompasses a 3D-aware, physics-oriented model of blur formation attributable to human movement, coupled with a 3D human motion model to clarify ambiguities found in motion-induced blurry images. This methodology facilitates the concurrent learning of avatar model parameters and the refinement of sub-frame motion parameters from a coarse initialization. We have established benchmarks for this task through a synthetic dataset derived from existing multi-view captures, alongside a real-captured dataset acquired through a 360-degree synchronous hybrid-exposure camera system. Comprehensive evaluations demonstrate that our model surpasses existing baselines.
Related papers
- iHuman: Instant Animatable Digital Humans From Monocular Videos [16.98924995658091]
We present a fast, simple, yet effective method for creating animatable 3D digital humans from monocular videos.
This work achieves and illustrates the need of accurate 3D mesh-type modelling of the human body.
Our method is faster by an order of magnitude (in terms of training time) than its closest competitor.
arXiv Detail & Related papers (2024-07-15T18:51:51Z) - NPGA: Neural Parametric Gaussian Avatars [46.52887358194364]
We propose a data-driven approach to create high-fidelity controllable avatars from multi-view video recordings.
We build our method around 3D Gaussian splatting for its highly efficient rendering and to inherit the topological flexibility of point clouds.
We evaluate our method on the public NeRSemble dataset, demonstrating that NPGA significantly outperforms the previous state-of-the-art avatars on the self-reenactment task by 2.6 PSNR.
arXiv Detail & Related papers (2024-05-29T17:58:09Z) - Champ: Controllable and Consistent Human Image Animation with 3D Parametric Guidance [25.346255905155424]
We introduce a methodology for human image animation by leveraging a 3D human parametric model within a latent diffusion framework.
By representing the 3D human parametric model as the motion guidance, we can perform parametric shape alignment of the human body between the reference image and the source video motion.
Our approach also exhibits superior generalization capabilities on the proposed in-the-wild dataset.
arXiv Detail & Related papers (2024-03-21T18:52:58Z) - HMP: Hand Motion Priors for Pose and Shape Estimation from Video [52.39020275278984]
We develop a generative motion prior specific for hands, trained on the AMASS dataset which features diverse and high-quality hand motions.
Our integration of a robust motion prior significantly enhances performance, especially in occluded scenarios.
We demonstrate our method's efficacy via qualitative and quantitative evaluations on the HO3D and DexYCB datasets.
arXiv Detail & Related papers (2023-12-27T22:35:33Z) - GaussianAvatar: Towards Realistic Human Avatar Modeling from a Single Video via Animatable 3D Gaussians [51.46168990249278]
We present an efficient approach to creating realistic human avatars with dynamic 3D appearances from a single video.
GustafAvatar is validated on both the public dataset and our collected dataset.
arXiv Detail & Related papers (2023-12-04T18:55:45Z) - Egocentric Whole-Body Motion Capture with FisheyeViT and Diffusion-Based
Motion Refinement [65.08165593201437]
We explore egocentric whole-body motion capture using a single fisheye camera, which simultaneously estimates human body and hand motion.
This task presents significant challenges due to the lack of high-quality datasets, fisheye camera distortion, and human body self-occlusion.
We propose a novel approach that leverages FisheyeViT to extract fisheye image features, which are converted into pixel-aligned 3D heatmap representations for 3D human body pose prediction.
arXiv Detail & Related papers (2023-11-28T07:13:47Z) - Towards Hard-pose Virtual Try-on via 3D-aware Global Correspondence
Learning [70.75369367311897]
3D-aware global correspondences are reliable flows that jointly encode global semantic correlations, local deformations, and geometric priors of 3D human bodies.
An adversarial generator takes the garment warped by the 3D-aware flow, and the image of the target person as inputs, to synthesize the photo-realistic try-on result.
arXiv Detail & Related papers (2022-11-25T12:16:21Z) - DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance
Fields for Articulated Avatars [92.37436369781692]
We present DRaCoN, a framework for learning full-body volumetric avatars.
It exploits the advantages of both the 2D and 3D neural rendering techniques.
Experiments on the challenging ZJU-MoCap and Human3.6M datasets indicate that DRaCoN outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T17:59:15Z) - Human Performance Capture from Monocular Video in the Wild [50.34917313325813]
We propose a method capable of capturing the dynamic 3D human shape from a monocular video featuring challenging body poses.
Our method outperforms state-of-the-art methods on an in-the-wild human video dataset 3DPW.
arXiv Detail & Related papers (2021-11-29T16:32:41Z) - Exploring Severe Occlusion: Multi-Person 3D Pose Estimation with Gated
Convolution [34.301501457959056]
We propose a temporal regression network with a gated convolution module to transform 2D joints to 3D.
A simple yet effective localization approach is also conducted to transform the normalized pose to the global trajectory.
Our proposed method outperforms most state-of-the-art 2D-to-3D pose estimation methods.
arXiv Detail & Related papers (2020-10-31T04:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.