PF-LHM: 3D Animatable Avatar Reconstruction from Pose-free Articulated Human Images
- URL: http://arxiv.org/abs/2506.13766v1
- Date: Mon, 16 Jun 2025 17:59:56 GMT
- Title: PF-LHM: 3D Animatable Avatar Reconstruction from Pose-free Articulated Human Images
- Authors: Lingteng Qiu, Peihao Li, Qi Zuo, Xiaodong Gu, Yuan Dong, Weihao Yuan, Siyu Zhu, Xiaoguang Han, Guanying Chen, Zilong Dong,
- Abstract summary: PF-LHM is a large human reconstruction model that generates high-quality 3D avatars in seconds from one or multiple casually captured pose-free images.<n>Our method unifies single- and multi-image 3D human reconstruction, achieving high-fidelity and animatable 3D human avatars without requiring camera and human pose annotations.
- Score: 23.745241278910946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reconstructing an animatable 3D human from casually captured images of an articulated subject without camera or human pose information is a practical yet challenging task due to view misalignment, occlusions, and the absence of structural priors. While optimization-based methods can produce high-fidelity results from monocular or multi-view videos, they require accurate pose estimation and slow iterative optimization, limiting scalability in unconstrained scenarios. Recent feed-forward approaches enable efficient single-image reconstruction but struggle to effectively leverage multiple input images to reduce ambiguity and improve reconstruction accuracy. To address these challenges, we propose PF-LHM, a large human reconstruction model that generates high-quality 3D avatars in seconds from one or multiple casually captured pose-free images. Our approach introduces an efficient Encoder-Decoder Point-Image Transformer architecture, which fuses hierarchical geometric point features and multi-view image features through multimodal attention. The fused features are decoded to recover detailed geometry and appearance, represented using 3D Gaussian splats. Extensive experiments on both real and synthetic datasets demonstrate that our method unifies single- and multi-image 3D human reconstruction, achieving high-fidelity and animatable 3D human avatars without requiring camera and human pose annotations. Code and models will be released to the public.
Related papers
- AdaHuman: Animatable Detailed 3D Human Generation with Compositional Multiview Diffusion [56.12859795754579]
AdaHuman is a novel framework that generates high-fidelity animatable 3D avatars from a single in-the-wild image.<n>AdaHuman incorporates two key innovations: a pose-conditioned 3D joint diffusion model and a compositional 3DGS refinement module.
arXiv Detail & Related papers (2025-05-30T17:59:54Z) - SIGMAN:Scaling 3D Human Gaussian Generation with Millions of Assets [72.26350984924129]
We propose a latent space generation paradigm for 3D human digitization.<n>We transform the ill-posed low-to-high-dimensional mapping problem into a learnable distribution shift.<n>We employ the multi-view optimization approach combined with synthetic data to construct the HGS-1M dataset.
arXiv Detail & Related papers (2025-04-09T15:38:18Z) - HumanDreamer-X: Photorealistic Single-image Human Avatars Reconstruction via Gaussian Restoration [29.03216532351979]
We introduce textbfHumanDreamer-X, a novel framework that integrates multi-view human generation and reconstruction into a unified pipeline.<n>In this framework, 3D Gaussian Splatting serves as an explicit 3D representation to provide initial geometry and appearance priority.<n>We also propose an attention modulation strategy that effectively enhances geometric details identity consistency across multi-view.
arXiv Detail & Related papers (2025-04-04T15:35:14Z) - HORT: Monocular Hand-held Objects Reconstruction with Transformers [61.36376511119355]
Reconstructing hand-held objects in 3D from monocular images is a significant challenge in computer vision.<n>We propose a transformer-based model to efficiently reconstruct dense 3D point clouds of hand-held objects.<n>Our method achieves state-of-the-art accuracy with much faster inference speed, while generalizing well to in-the-wild images.
arXiv Detail & Related papers (2025-03-27T09:45:09Z) - FRESA: Feedforward Reconstruction of Personalized Skinned Avatars from Few Images [74.86864398919467]
We present a novel method for reconstructing personalized 3D human avatars with realistic animation from only a few images.<n>We learn a universal prior from over a thousand clothed humans to achieve instant feedforward generation and zero-shot generalization.<n>Our method generates more authentic reconstruction and animation than state-of-the-arts, and can be directly generalized to inputs from casually taken phone photos.
arXiv Detail & Related papers (2025-03-24T23:20:47Z) - LHM: Large Animatable Human Reconstruction Model from a Single Image in Seconds [21.99354901986186]
We propose LHM (Large Animatable Human Reconstruction Model) to infer high-fidelity avatars represented as 3D Gaussian splatting in a feed-forward pass.<n>Our model leverages a multimodal transformer architecture to effectively encode the human body positional features and image features with attention mechanism.<n>Our LHM generates plausible animatable human in seconds without post-processing for face and hands, outperforming existing methods in both reconstruction accuracy and generalization ability.
arXiv Detail & Related papers (2025-03-13T17:59:21Z) - MVD-HuGaS: Human Gaussians from a Single Image via 3D Human Multi-view Diffusion Prior [35.704591162502375]
We present emphMVD-HuGaS, enabling free-view 3D human rendering from a single image via a multi-view human diffusion model.<n>Experiments on Thuman2.0 and 2K2K datasets show that the proposed MVD-HuGaS achieves state-of-the-art performance on single-view 3D human rendering.
arXiv Detail & Related papers (2025-03-11T09:37:15Z) - AniGS: Animatable Gaussian Avatar from a Single Image with Inconsistent Gaussian Reconstruction [26.82525451095629]
We propose a robust method for 3D reconstruction of inconsistent images, enabling real-time rendering during inference.<n>We recast the reconstruction problem as a 4D task and introduce an efficient 3D modeling approach using 4D Gaussian Splatting.<n>Experiments demonstrate that our method achieves photorealistic, real-time animation of 3D human avatars from in-the-wild images.
arXiv Detail & Related papers (2024-12-03T18:55:39Z) - SHERF: Generalizable Human NeRF from a Single Image [59.10589479808622]
SHERF is the first generalizable Human NeRF model for recovering animatable 3D humans from a single input image.
We propose a bank of 3D-aware hierarchical features, including global, point-level, and pixel-aligned features, to facilitate informative encoding.
arXiv Detail & Related papers (2023-03-22T17:59:12Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
We present a high-fidelity 3D generative adversarial network (GAN) inversion framework that can synthesize photo-realistic novel views.
Our approach enables high-fidelity 3D rendering from a single image, which is promising for various applications of AI-generated 3D content.
arXiv Detail & Related papers (2022-11-28T18:59:52Z) - Multi-person Implicit Reconstruction from a Single Image [37.6877421030774]
We present a new end-to-end learning framework to obtain detailed and spatially coherent reconstructions of multiple people from a single image.
Existing multi-person methods suffer from two main drawbacks: they are often model-based and cannot capture accurate 3D models of people with loose clothing and hair.
arXiv Detail & Related papers (2021-04-19T13:21:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.