GEMeX: A Large-Scale, Groundable, and Explainable Medical VQA Benchmark for Chest X-ray Diagnosis
- URL: http://arxiv.org/abs/2411.16778v1
- Date: Mon, 25 Nov 2024 07:36:46 GMT
- Title: GEMeX: A Large-Scale, Groundable, and Explainable Medical VQA Benchmark for Chest X-ray Diagnosis
- Authors: Bo Liu, Ke Zou, Liming Zhan, Zexin Lu, Xiaoyu Dong, Yidi Chen, Chengqiang Xie, Jiannong Cao, Xiao-Ming Wu, Huazhu Fu,
- Abstract summary: We introduce a large-scale, Groundable, and Explainable Medical VQA benchmark for chest X-ray diagnosis (GEMeX)
A multi-modal explainability mechanism offers detailed visual and textual explanations for each question-answer pair.
Four distinct question types, open-ended, closed-ended, single-choice, and multiple-choice, better reflect diverse clinical needs.
- Score: 44.76975131560712
- License:
- Abstract: Medical Visual Question Answering (VQA) is an essential technology that integrates computer vision and natural language processing to automatically respond to clinical inquiries about medical images. However, current medical VQA datasets exhibit two significant limitations: (1) they often lack visual and textual explanations for answers, which impedes their ability to satisfy the comprehension needs of patients and junior doctors; (2) they typically offer a narrow range of question formats, inadequately reflecting the diverse requirements encountered in clinical scenarios. These limitations pose significant challenges to the development of a reliable and user-friendly Med-VQA system. To address these challenges, we introduce a large-scale, Groundable, and Explainable Medical VQA benchmark for chest X-ray diagnosis (GEMeX), featuring several innovative components: (1) A multi-modal explainability mechanism that offers detailed visual and textual explanations for each question-answer pair, thereby enhancing answer comprehensibility; (2) Four distinct question types, open-ended, closed-ended, single-choice, and multiple-choice, that better reflect diverse clinical needs. We evaluated 10 representative large vision language models on GEMeX and found that they underperformed, highlighting the dataset's complexity. However, after fine-tuning a baseline model using the training set, we observed a significant performance improvement, demonstrating the dataset's effectiveness. The project is available at www.med-vqa.com/GEMeX.
Related papers
- A Survey of Medical Vision-and-Language Applications and Their Techniques [48.268198631277315]
Medical vision-and-language models (MVLMs) have attracted substantial interest due to their capability to offer a natural language interface for interpreting complex medical data.
Here, we provide a comprehensive overview of MVLMs and the various medical tasks to which they have been applied.
We also examine the datasets used for these tasks and compare the performance of different models based on standardized evaluation metrics.
arXiv Detail & Related papers (2024-11-19T03:27:05Z) - ViKL: A Mammography Interpretation Framework via Multimodal Aggregation of Visual-knowledge-linguistic Features [54.37042005469384]
We announce MVKL, the first multimodal mammography dataset encompassing multi-view images, detailed manifestations and reports.
Based on this dataset, we focus on the challanging task of unsupervised pretraining.
We propose ViKL, a framework that synergizes Visual, Knowledge, and Linguistic features.
arXiv Detail & Related papers (2024-09-24T05:01:23Z) - Benchmarking Large Language Models on Answering and Explaining Challenging Medical Questions [19.436999992810797]
We construct two new datasets: JAMA Clinical Challenge and Medbullets.
JAMA Clinical Challenge consists of questions based on challenging clinical cases, while Medbullets comprises simulated clinical questions.
We evaluate seven LLMs on the two datasets using various prompts.
arXiv Detail & Related papers (2024-02-28T05:44:41Z) - Free Form Medical Visual Question Answering in Radiology [3.495246564946556]
Research in medical Visual Question Answering has been scant, only gaining momentum since 2018.
Our research delves into the effective representation of radiology images and the joint learning of multimodal representations.
Our model achieves a top-1 accuracy of 79.55% with a less complex architecture, demonstrating comparable performance to current state-of-the-art models.
arXiv Detail & Related papers (2024-01-23T20:26:52Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
We propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts.
Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model.
arXiv Detail & Related papers (2023-10-04T21:57:09Z) - Masked Vision and Language Pre-training with Unimodal and Multimodal
Contrastive Losses for Medical Visual Question Answering [7.669872220702526]
We present a novel self-supervised approach that learns unimodal and multimodal feature representations of input images and text.
The proposed approach achieves state-of-the-art (SOTA) performance on three publicly available medical VQA datasets.
arXiv Detail & Related papers (2023-07-11T15:00:11Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
We introduce XrayGPT, a novel conversational medical vision-language model.
It can analyze and answer open-ended questions about chest radiographs.
We generate 217k interactive and high-quality summaries from free-text radiology reports.
arXiv Detail & Related papers (2023-06-13T17:59:59Z) - PMC-VQA: Visual Instruction Tuning for Medical Visual Question Answering [56.25766322554655]
Medical Visual Question Answering (MedVQA) presents a significant opportunity to enhance diagnostic accuracy and healthcare delivery.
We propose a generative-based model for medical visual understanding by aligning visual information from a pre-trained vision encoder with a large language model.
We train the proposed model on PMC-VQA and then fine-tune it on multiple public benchmarks, e.g., VQA-RAD, SLAKE, and Image-Clef 2019.
arXiv Detail & Related papers (2023-05-17T17:50:16Z) - MuVAM: A Multi-View Attention-based Model for Medical Visual Question
Answering [2.413694065650786]
This paper proposes a multi-view attention-based model(MuVAM) for medical visual question answering.
It integrates the high-level semantics of medical images on the basis of text description.
Experiments on two datasets show that the effectiveness of MuVAM surpasses the state-of-the-art method.
arXiv Detail & Related papers (2021-07-07T13:40:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.