TIDE: Training Locally Interpretable Domain Generalization Models Enables Test-time Correction
- URL: http://arxiv.org/abs/2411.16788v1
- Date: Mon, 25 Nov 2024 08:46:37 GMT
- Title: TIDE: Training Locally Interpretable Domain Generalization Models Enables Test-time Correction
- Authors: Aishwarya Agarwal, Srikrishna Karanam, Vineet Gandhi,
- Abstract summary: We consider the problem of single-source domain generalization.
Existing methods typically rely on extensive augmentations to synthetically cover diverse domains during training.
We propose an approach that compels models to leverage such local concepts during prediction.
- Score: 14.396966854171273
- License:
- Abstract: We consider the problem of single-source domain generalization. Existing methods typically rely on extensive augmentations to synthetically cover diverse domains during training. However, they struggle with semantic shifts (e.g., background and viewpoint changes), as they often learn global features instead of local concepts that tend to be domain invariant. To address this gap, we propose an approach that compels models to leverage such local concepts during prediction. Given no suitable dataset with per-class concepts and localization maps exists, we first develop a novel pipeline to generate annotations by exploiting the rich features of diffusion and large-language models. Our next innovation is TIDE, a novel training scheme with a concept saliency alignment loss that ensures model focus on the right per-concept regions and a local concept contrastive loss that promotes learning domain-invariant concept representations. This not only gives a robust model but also can be visually interpreted using the predicted concept saliency maps. Given these maps at test time, our final contribution is a new correction algorithm that uses the corresponding local concept representations to iteratively refine the prediction until it aligns with prototypical concept representations that we store at the end of model training. We evaluate our approach extensively on four standard DG benchmark datasets and substantially outperform the current state-ofthe-art (12% improvement on average) while also demonstrating that our predictions can be visually interpreted
Related papers
- Decompose the model: Mechanistic interpretability in image models with Generalized Integrated Gradients (GIG) [24.02036048242832]
This paper introduces a novel approach to trace the entire pathway from input through all intermediate layers to the final output within the whole dataset.
We utilize Pointwise Feature Vectors (PFVs) and Effective Receptive Fields (ERFs) to decompose model embeddings into interpretable Concept Vectors.
Then, we calculate the relevance between concept vectors with our Generalized Integrated Gradients (GIG) enabling a comprehensive, dataset-wide analysis of model behavior.
arXiv Detail & Related papers (2024-09-03T05:19:35Z) - Locally Testing Model Detections for Semantic Global Concepts [3.112979958793927]
We propose a framework for linking global concept encodings to the local processing of single network inputs.
Our approach has the advantage of fully covering the model-internal encoding of the semantic concept.
The results show major differences in the local perception and usage of individual global concept encodings.
arXiv Detail & Related papers (2024-05-27T12:52:45Z) - Self-Supervised Learning for Covariance Estimation [3.04585143845864]
We propose to globally learn a neural network that will then be applied locally at inference time.
The architecture is based on the popular attention mechanism.
It can be pre-trained as a foundation model and then be repurposed for various downstream tasks, e.g., adaptive target detection in radar or hyperspectral imagery.
arXiv Detail & Related papers (2024-03-13T16:16:20Z) - Learning Transferable Conceptual Prototypes for Interpretable
Unsupervised Domain Adaptation [79.22678026708134]
In this paper, we propose an inherently interpretable method, named Transferable Prototype Learning ( TCPL)
To achieve this goal, we design a hierarchically prototypical module that transfers categorical basic concepts from the source domain to the target domain and learns domain-shared prototypes for explaining the underlying reasoning process.
Comprehensive experiments show that the proposed method can not only provide effective and intuitive explanations but also outperform previous state-of-the-arts.
arXiv Detail & Related papers (2023-10-12T06:36:41Z) - Prompting Diffusion Representations for Cross-Domain Semantic
Segmentation [101.04326113360342]
diffusion-pretraining achieves extraordinary domain generalization results for semantic segmentation.
We introduce a scene prompt and a prompt randomization strategy to help further disentangle the domain-invariant information when training the segmentation head.
arXiv Detail & Related papers (2023-07-05T09:28:25Z) - Sampling Based On Natural Image Statistics Improves Local Surrogate
Explainers [111.31448606885672]
Surrogate explainers are a popular post-hoc interpretability method to further understand how a model arrives at a prediction.
We propose two approaches to do so, namely (1) altering the method for sampling the local neighbourhood and (2) using perceptual metrics to convey some of the properties of the distribution of natural images.
arXiv Detail & Related papers (2022-08-08T08:10:13Z) - Consistent Explanations by Contrastive Learning [15.80891456718324]
Post-hoc evaluation techniques, such as Grad-CAM, enable humans to inspect the spatial regions responsible for a particular network decision.
We introduce a novel training method to train the model to produce more consistent explanations.
We show that our method, Contrastive Grad-CAM Consistency (CGC), results in Grad-CAM interpretation heatmaps that are consistent with human annotations.
arXiv Detail & Related papers (2021-10-01T16:49:16Z) - Interpretable Semantic Photo Geolocalization [4.286838964398275]
We present two contributions in order to improve the interpretability of a geolocalization model.
We propose a novel, semantic partitioning method which intuitively leads to an improved understanding of the predictions.
We also introduce a novel metric to assess the importance of semantic visual concepts for a certain prediction.
arXiv Detail & Related papers (2021-04-30T13:28:18Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Learning to Learn with Variational Information Bottleneck for Domain
Generalization [128.90691697063616]
Domain generalization models learn to generalize to previously unseen domains, but suffer from prediction uncertainty and domain shift.
We introduce a probabilistic meta-learning model for domain generalization, in which parameters shared across domains are modeled as distributions.
To deal with domain shift, we learn domain-invariant representations by the proposed principle of meta variational information bottleneck, we call MetaVIB.
arXiv Detail & Related papers (2020-07-15T12:05:52Z) - Explainable Deep Classification Models for Domain Generalization [94.43131722655617]
Explanations are defined as regions of visual evidence upon which a deep classification network makes a decision.
Our training strategy enforces a periodic saliency-based feedback to encourage the model to focus on the image regions that directly correspond to the ground-truth object.
arXiv Detail & Related papers (2020-03-13T22:22:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.