Adaptive Concept Bottleneck for Foundation Models Under Distribution Shifts
- URL: http://arxiv.org/abs/2412.14097v1
- Date: Wed, 18 Dec 2024 17:47:46 GMT
- Title: Adaptive Concept Bottleneck for Foundation Models Under Distribution Shifts
- Authors: Jihye Choi, Jayaram Raghuram, Yixuan Li, Somesh Jha,
- Abstract summary: We explore the potential of Concept Bottleneck Models for transforming complex, non-interpretable foundation models into interpretable decision-making pipelines.
Specifically, we focus on the test-time deployment of such an interpretable CBM pipeline "in the wild"
Our adaptation method produces concept-based interpretations better aligned with the test data and boosts post-deployment accuracy by up to 28%.
- Score: 33.677249894085186
- License:
- Abstract: Advancements in foundation models (FMs) have led to a paradigm shift in machine learning. The rich, expressive feature representations from these pre-trained, large-scale FMs are leveraged for multiple downstream tasks, usually via lightweight fine-tuning of a shallow fully-connected network following the representation. However, the non-interpretable, black-box nature of this prediction pipeline can be a challenge, especially in critical domains such as healthcare, finance, and security. In this paper, we explore the potential of Concept Bottleneck Models (CBMs) for transforming complex, non-interpretable foundation models into interpretable decision-making pipelines using high-level concept vectors. Specifically, we focus on the test-time deployment of such an interpretable CBM pipeline "in the wild", where the input distribution often shifts from the original training distribution. We first identify the potential failure modes of such a pipeline under different types of distribution shifts. Then we propose an adaptive concept bottleneck framework to address these failure modes, that dynamically adapts the concept-vector bank and the prediction layer based solely on unlabeled data from the target domain, without access to the source (training) dataset. Empirical evaluations with various real-world distribution shifts show that our adaptation method produces concept-based interpretations better aligned with the test data and boosts post-deployment accuracy by up to 28%, aligning the CBM performance with that of non-interpretable classification.
Related papers
- TIDE: Training Locally Interpretable Domain Generalization Models Enables Test-time Correction [14.396966854171273]
We consider the problem of single-source domain generalization.
Existing methods typically rely on extensive augmentations to synthetically cover diverse domains during training.
We propose an approach that compels models to leverage such local concepts during prediction.
arXiv Detail & Related papers (2024-11-25T08:46:37Z) - Learning Transferable Conceptual Prototypes for Interpretable
Unsupervised Domain Adaptation [79.22678026708134]
In this paper, we propose an inherently interpretable method, named Transferable Prototype Learning ( TCPL)
To achieve this goal, we design a hierarchically prototypical module that transfers categorical basic concepts from the source domain to the target domain and learns domain-shared prototypes for explaining the underlying reasoning process.
Comprehensive experiments show that the proposed method can not only provide effective and intuitive explanations but also outperform previous state-of-the-arts.
arXiv Detail & Related papers (2023-10-12T06:36:41Z) - Boosted Control Functions: Distribution generalization and invariance in confounded models [10.503777692702952]
We introduce a strong notion of invariance that allows for distribution generalization even in the presence of nonlinear, non-identifiable structural functions.
We propose the ControlTwicing algorithm to estimate the Boosted Control Function (BCF) using flexible machine-learning techniques.
arXiv Detail & Related papers (2023-10-09T15:43:46Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
Conformal prediction is emerging as a popular paradigm for providing rigorous uncertainty quantification in machine learning.
In this paper, we extend conformal prediction to the federated learning setting.
We propose a weaker notion of partial exchangeability, better suited to the FL setting, and use it to develop the Federated Conformal Prediction framework.
arXiv Detail & Related papers (2023-05-27T19:57:27Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
Modern deep convolutional networks (CNNs) are often criticized for not generalizing under distributional shifts.
We study the interplay between out-of-distribution and transfer performance of modern image classification CNNs for the first time.
We find that increasing both the training set and model sizes significantly improve the distributional shift robustness.
arXiv Detail & Related papers (2020-07-16T18:39:04Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Calibrated Adversarial Refinement for Stochastic Semantic Segmentation [5.849736173068868]
We present a strategy for learning a calibrated predictive distribution over semantic maps, where the probability associated with each prediction reflects its ground truth correctness likelihood.
We demonstrate the versatility and robustness of the approach by achieving state-of-the-art results on the multigrader LIDC dataset and on a modified Cityscapes dataset with injected ambiguities.
We show that the core design can be adapted to other tasks requiring learning a calibrated predictive distribution by experimenting on a toy regression dataset.
arXiv Detail & Related papers (2020-06-23T16:39:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.