KL-geodesics flow matching with a novel sampling scheme
- URL: http://arxiv.org/abs/2411.16821v2
- Date: Wed, 12 Feb 2025 06:54:53 GMT
- Title: KL-geodesics flow matching with a novel sampling scheme
- Authors: Egor Sevriugov, Ivan Oseledets,
- Abstract summary: Non-autoregressive language models generate all tokens simultaneously, offering potential speed advantages over traditional autoregressive models.
We investigate a conditional flow matching approach for text generation.
- Score: 4.347494885647007
- License:
- Abstract: Non-autoregressive language models generate all tokens simultaneously, offering potential speed advantages over traditional autoregressive models, but they face challenges in modeling the complex dependencies inherent in text data. In this work, we investigate a conditional flow matching approach for text generation. We represent tokens as one-hot vectors in a \(V\)-dimensional simplex and utilize geodesics under the Kullback-Leibler (KL) divergence, which correspond to linear interpolation in logit space. We provide a theoretical justification that maximizing the conditional likelihood \(P_{\theta}(x_1 \mid x_t, t)\) yields the exact flow matching velocity under logit interpolation. To address the suboptimal performance of basic inference, we propose a novel empirical sampling scheme that iteratively samples from the conditional distribution and introduces additional noise, significantly improving results despite lacking full theoretical underpinnings. Furthermore, we propose a hybrid inference method that combines the basic approach with the sampling scheme. This method demonstrates superior performance on both conditional and unconditional text generation experiments compared to previous SOTA method for discrete flow matching.
Related papers
- Parallel simulation for sampling under isoperimetry and score-based diffusion models [56.39904484784127]
As data size grows, reducing the iteration cost becomes an important goal.
Inspired by the success of the parallel simulation of the initial value problem in scientific computation, we propose parallel Picard methods for sampling tasks.
Our work highlights the potential advantages of simulation methods in scientific computation for dynamics-based sampling and diffusion models.
arXiv Detail & Related papers (2024-12-10T11:50:46Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - DiffuSeq-v2: Bridging Discrete and Continuous Text Spaces for
Accelerated Seq2Seq Diffusion Models [58.450152413700586]
We introduce a soft absorbing state that facilitates the diffusion model in learning to reconstruct discrete mutations based on the underlying Gaussian space.
We employ state-of-the-art ODE solvers within the continuous space to expedite the sampling process.
Our proposed method effectively accelerates the training convergence by 4x and generates samples of similar quality 800x faster.
arXiv Detail & Related papers (2023-10-09T15:29:10Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Towards extraction of orthogonal and parsimonious non-linear modes from
turbulent flows [0.0]
We propose a deep probabilistic-neural-network architecture for learning a minimal and near-orthogonal set of non-linear modes.
Our approach is based on $beta$-variational autoencoders ($beta$-VAEs) and convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-09-03T13:38:51Z) - Posterior-Aided Regularization for Likelihood-Free Inference [23.708122045184698]
Posterior-Aided Regularization (PAR) is applicable to learning the density estimator, regardless of the model structure.
We provide a unified estimation method of PAR to estimate both reverse KL term and mutual information term with a single neural network.
arXiv Detail & Related papers (2021-02-15T16:59:30Z) - Efficient Semi-Implicit Variational Inference [65.07058307271329]
We propose an efficient and scalable semi-implicit extrapolational (SIVI)
Our method maps SIVI's evidence to a rigorous inference of lower gradient values.
arXiv Detail & Related papers (2021-01-15T11:39:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.