Decision Making under the Exponential Family: Distributionally Robust Optimisation with Bayesian Ambiguity Sets
- URL: http://arxiv.org/abs/2411.16829v1
- Date: Mon, 25 Nov 2024 18:49:02 GMT
- Title: Decision Making under the Exponential Family: Distributionally Robust Optimisation with Bayesian Ambiguity Sets
- Authors: Charita Dellaporta, Patrick O'Hara, Theodoros Damoulas,
- Abstract summary: We introduce Distributionally Robust optimisation with Bayesian Ambiguity Sets (DRO-BAS)
DRO-BAS hedges against model uncertainty by optimising the worst-case risk over a posterior-informed ambiguity set.
We prove that both admit, under conditions, strong dual formulations leading to efficient single-stage programs.
- Score: 8.642152250082368
- License:
- Abstract: Decision making under uncertainty is challenging as the data-generating process (DGP) is often unknown. Bayesian inference proceeds by estimating the DGP through posterior beliefs on the model's parameters. However, minimising the expected risk under these beliefs can lead to suboptimal decisions due to model uncertainty or limited, noisy observations. To address this, we introduce Distributionally Robust Optimisation with Bayesian Ambiguity Sets (DRO-BAS) which hedges against model uncertainty by optimising the worst-case risk over a posterior-informed ambiguity set. We provide two such sets, based on posterior expectations (DRO-BAS(PE)) or posterior predictives (DRO-BAS(PP)) and prove that both admit, under conditions, strong dual formulations leading to efficient single-stage stochastic programs which are solved with a sample average approximation. For DRO-BAS(PE) this covers all conjugate exponential family members while for DRO-BAS(PP) this is shown under conditions on the predictive's moment generating function. Our DRO-BAS formulations Pareto dominate existing Bayesian DRO on the Newsvendor problem and achieve faster solve times with comparable robustness on the Portfolio problem.
Related papers
- Distributionally Robust Optimisation with Bayesian Ambiguity Sets [8.642152250082368]
We introduce Distributionally Robust optimisation with Bayesian Ambiguity Sets (DRO-BAS)
DRO-BAS hedges against uncertainty in the model by optimising the worst-case risk over a posterior-informed ambiguity set.
We show that our method admits a closed-form dual representation for many exponential family members.
arXiv Detail & Related papers (2024-09-05T12:59:38Z) - Distributionally and Adversarially Robust Logistic Regression via Intersecting Wasserstein Balls [8.720733751119994]
Adversarially robust optimization (ARO) has become the de facto standard for training models to defend against adversarial attacks during testing.
Despite their robustness, these models often suffer from severe overfitting.
We propose two approaches to replace the empirical distribution in training with: (i) a worst-case distribution within an ambiguity set; or (ii) a mixture of the empirical distribution with one derived from an auxiliary dataset.
arXiv Detail & Related papers (2024-07-18T15:59:37Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Smoothed $f$-Divergence Distributionally Robust Optimization [5.50764401597583]
We argue that a special type of distributionallly robust optimization (DRO) formulation offers theoretical advantages.
DRO uses an ambiguity set based on a Kullback Leibler (KL) divergence smoothed by the Wasserstein or L'evy-Prokhorov (LP) distance.
arXiv Detail & Related papers (2023-06-24T19:22:01Z) - Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization [61.39201891894024]
Group distributionally robust optimization (group DRO) can minimize the worst-case loss over pre-defined groups.
We reformulate the group DRO framework by proposing Q-Diversity.
Characterized by an interactive training mode, Q-Diversity relaxes the group identification from annotation into direct parameterization.
arXiv Detail & Related papers (2023-05-20T07:02:27Z) - Off-Policy Risk Assessment in Markov Decision Processes [15.225153671736201]
We develop the first doubly robust (DR) estimator for the CDF of returns in Markov decision processes (MDPs)
This estimator enjoys significantly less variance and, when the model is well specified, achieves the Cramer-Rao variance lower bound.
We derive the first minimax lower bounds for off-policy CDF and risk estimation, which match our error bounds up to a constant factor.
arXiv Detail & Related papers (2022-09-21T15:40:59Z) - Error-based Knockoffs Inference for Controlled Feature Selection [49.99321384855201]
We propose an error-based knockoff inference method by integrating the knockoff features, the error-based feature importance statistics, and the stepdown procedure together.
The proposed inference procedure does not require specifying a regression model and can handle feature selection with theoretical guarantees.
arXiv Detail & Related papers (2022-03-09T01:55:59Z) - Doubly Robust Distributionally Robust Off-Policy Evaluation and Learning [59.02006924867438]
Off-policy evaluation and learning (OPE/L) use offline observational data to make better decisions.
Recent work proposed distributionally robust OPE/L (DROPE/L) to remedy this, but the proposal relies on inverse-propensity weighting.
We propose the first DR algorithms for DROPE/L with KL-divergence uncertainty sets.
arXiv Detail & Related papers (2022-02-19T20:00:44Z) - DORO: Distributional and Outlier Robust Optimization [98.44757325531631]
We propose the framework of DORO, for Distributional and Outlier Robust Optimization.
At the core of this approach is a refined risk function which prevents DRO from overfitting to potential outliers.
We theoretically prove the effectiveness of the proposed method, and empirically show that DORO improves the performance and stability of DRO with experiments on large modern datasets.
arXiv Detail & Related papers (2021-06-11T02:59:54Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z) - Residuals-based distributionally robust optimization with covariate
information [0.0]
We consider data-driven approaches that integrate a machine learning prediction model within distributionally robust optimization (DRO)
Our framework is flexible in the sense that it can accommodate a variety of learning setups and DRO ambiguity sets.
arXiv Detail & Related papers (2020-12-02T11:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.