Randomised Gaussian Process Upper Confidence Bound for Bayesian
Optimisation
- URL: http://arxiv.org/abs/2006.04296v1
- Date: Mon, 8 Jun 2020 00:28:41 GMT
- Title: Randomised Gaussian Process Upper Confidence Bound for Bayesian
Optimisation
- Authors: Julian Berk, Sunil Gupta, Santu Rana and Svetha Venkatesh
- Abstract summary: We develop a modified Gaussian process upper confidence bound (GP-UCB) acquisition function.
This is done by sampling the exploration-exploitation trade-off parameter from a distribution.
We prove that this allows the expected trade-off parameter to be altered to better suit the problem without compromising a bound on the function's Bayesian regret.
- Score: 60.93091603232817
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to improve the performance of Bayesian optimisation, we develop a
modified Gaussian process upper confidence bound (GP-UCB) acquisition function.
This is done by sampling the exploration-exploitation trade-off parameter from
a distribution. We prove that this allows the expected trade-off parameter to
be altered to better suit the problem without compromising a bound on the
function's Bayesian regret. We also provide results showing that our method
achieves better performance than GP-UCB in a range of real-world and synthetic
problems.
Related papers
- Sample-efficient Bayesian Optimisation Using Known Invariances [56.34916328814857]
We show that vanilla and constrained BO algorithms are inefficient when optimising invariant objectives.
We derive a bound on the maximum information gain of these invariant kernels.
We use our method to design a current drive system for a nuclear fusion reactor, finding a high-performance solution.
arXiv Detail & Related papers (2024-10-22T12:51:46Z) - Regret Analysis for Randomized Gaussian Process Upper Confidence Bound [9.967062483758632]
This paper analyzes the randomized variant of GP-UCB called improved randomized GP-UCB.
In both regret analyses, IRGP-UCB achieves a sub-linear regret upper bound without increasing the confidence parameter if the input domain is finite.
arXiv Detail & Related papers (2024-09-02T06:49:29Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
We propose a ranking-based surrogate model based on the Poisson process and introduce an efficient BO framework, namely Poisson Process Bayesian Optimization (PoPBO)
Compared to the classic GP-BO method, our PoPBO has lower costs and better robustness to noise, which is verified by abundant experiments.
arXiv Detail & Related papers (2024-02-05T02:54:50Z) - Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration [2.984929040246293]
novel noise-free Bayesian optimization strategies that rely on a random exploration step to enhance the accuracy of Gaussian process surrogate models.
New algorithms retain the ease of implementation of the classical GP-UCB, but an additional exploration step facilitates their convergence.
arXiv Detail & Related papers (2024-01-30T14:16:06Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
We propose a novel Bayesian surrogate model to balance exploration with exploitation of the search space.
To endow function sampling with scalability, random feature-based kernel approximation is leveraged per GP model.
To further establish convergence of the proposed EGP-TS to the global optimum, analysis is conducted based on the notion of Bayesian regret.
arXiv Detail & Related papers (2022-05-27T16:43:10Z) - Likelihood-Free Inference with Deep Gaussian Processes [70.74203794847344]
Surrogate models have been successfully used in likelihood-free inference to decrease the number of simulator evaluations.
We propose a Deep Gaussian Process (DGP) surrogate model that can handle more irregularly behaved target distributions.
Our experiments show how DGPs can outperform GPs on objective functions with multimodal distributions and maintain a comparable performance in unimodal cases.
arXiv Detail & Related papers (2020-06-18T14:24:05Z) - Sparse Gaussian Processes Revisited: Bayesian Approaches to
Inducing-Variable Approximations [27.43948386608]
Variational inference techniques based on inducing variables provide an elegant framework for scalable estimation in Gaussian process (GP) models.
In this work we challenge the common wisdom that optimizing the inducing inputs in variational framework yields optimal performance.
arXiv Detail & Related papers (2020-03-06T08:53:18Z) - Uncertainty Quantification for Bayesian Optimization [12.433600693422235]
We propose a novel approach to assess the output uncertainty of Bayesian optimization algorithms, which proceeds by constructing confidence regions of the maximum point (or value) of the objective function.
Our theory provides a unified uncertainty quantification framework for all existing sequential sampling policies and stopping criteria.
arXiv Detail & Related papers (2020-02-04T22:48:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.