A fluorescent-protein spin qubit
- URL: http://arxiv.org/abs/2411.16835v1
- Date: Mon, 25 Nov 2024 19:00:00 GMT
- Title: A fluorescent-protein spin qubit
- Authors: Jacob S. Feder, Benjamin S. Soloway, Shreya Verma, Zhi Z. Geng, Shihao Wang, Bethel Kifle, Emmeline G. Riendeau, Yeghishe Tsaturyan, Leah R. Weiss, Mouzhe Xie, Jun Huang, Aaron Esser-Kahn, Laura Gagliardi, David D. Awschalom, Peter C. Maurer,
- Abstract summary: We realize an optically-addressable spin qubit in the Enhanced Yellow Fluorescent Protein (EYFP)
A near-infrared laser pulse allows for triggered readout of the triplet state with up to 44% spin contrast.
We express the qubit in mammalian cells, maintaining contrast and coherent control despite the complex intracellular environment.
- Score: 4.479457641989854
- License:
- Abstract: Optically-addressable spin qubits form the foundation of a new generation of emerging nanoscale sensors. The engineering of these sensors has mainly focused on solid-state systems such as the nitrogen-vacancy (NV) center in diamond. However, NVs are restricted in their ability to interface with biomolecules due to their bulky diamond host. Meanwhile, fluorescent proteins have become the gold standard in bioimaging, as they are genetically encodable and easily integrated with biomolecules. While fluorescent proteins have been suggested to possess a metastable triplet state, they have not been investigated as qubit sensors. Here, we realize an optically-addressable spin qubit in the Enhanced Yellow Fluorescent Protein (EYFP) enabled by a novel spin-readout technique. A near-infrared laser pulse allows for triggered readout of the triplet state with up to 44% spin contrast. Using coherent microwave control of the EYFP spin at liquid-nitrogen temperatures, we measure a spin-lattice relaxation time of $(141 \pm 5)$ {\mu}s, a $(16 \pm 2)$ {\mu}s coherence time under Carr-Purcell-Meiboom-Gill (CPMG) decoupling, and a predicted oscillating (AC) magnetic field sensitivity with an upper bound of $183 \, \mathrm{fT}\, \mathrm{mol}^{1/2}\, \mathrm{Hz}^{-1/2}$. We express the qubit in mammalian cells, maintaining contrast and coherent control despite the complex intracellular environment. Finally, we demonstrate optically-detected magnetic resonance at room temperature in aqueous solution with contrast up to 3%, and measure a static (DC) field sensitivity with an upper bound of $93 \, \mathrm{pT}\, \mathrm{mol}^{1/2}\, \mathrm{Hz}^{-1/2}$. Our results establish fluorescent proteins as a powerful new qubit sensor platform and pave the way for applications in the life sciences that are out of reach for solid-state technologies.
Related papers
- Enhancing the ODMR Signal of Organic Molecular Qubits [0.0]
In quantum information science and sensing, electron spins are often purified into a specific polarisation through an optical-spin interface.
Diamond-NV centres and transition metals are both excellent platforms for these so-called colour centres.
We propose to improve the optically-detected magnetic resonance signal by moving singlet populations back into the triplet $M_S=pm1$ sublevel.
arXiv Detail & Related papers (2024-09-28T05:48:36Z) - A miniaturized magnetic field sensor based on nitrogen-vacancy centers [0.0]
The nitrogen-vacancy center in diamond is a prime candidate for quantum sensing technologies.
We present a fully integrated mechanically robust fiber-based endoscopic sensor capable of $5.9,mathrmnT/ sqrtmathrmHz$ magnetic field sensitivity.
We demonstrate the capability of vector magnetic field measurements in a magnetic field as used in state-of-the-art ultracold quantum gas experiments.
arXiv Detail & Related papers (2024-02-29T17:20:13Z) - Sensitive AC and DC Magnetometry with Nitrogen-Vacancy Center Ensembles
in Diamond [0.0]
We demonstrate the most sensitive nitrogen-vacancy-based bulk magnetometer reported to date.
The device does not include a flux concentrator, preserving the fixed response of the NVs to magnetic field.
arXiv Detail & Related papers (2023-05-10T16:02:58Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Computational Insights into Electronic Excitations, Spin-Orbit Coupling
Effects, and Spin Decoherence in Cr(IV)-based Molecular Qubits [63.18666008322476]
We provide insights into key properties of Cr(IV)-based molecules aimed at assisting chemical design of efficient molecular qubits.
We find that the sign of the uniaxial zero-field splitting (ZFS) parameter is negative for all considered molecules.
We quantify (super)hyperfine coupling to the $53$Cr nuclear spin and to the $13C and $1H nuclear spins.
arXiv Detail & Related papers (2022-05-01T01:23:10Z) - High-Field Magnetometry with Hyperpolarized Nuclear Spins [0.0]
We propose and demonstrate a high-field spin magnetometer constructed from an ensemble of hyperpolarized $13C$ nuclear spins in diamond.
For quantum sensing at 7T and a single crystal sample, we demonstrate spectral resolution better than 100 mHz.
This work points to interesting opportunities for microscale NMR chemical sensors constructed from hyperpolarized nanodiamonds.
arXiv Detail & Related papers (2021-12-22T01:33:07Z) - High-resolution 'magic'-field spectroscopy on trapped polyatomic
molecules [62.997667081978825]
Rapid progress in cooling and trapping of molecules has enabled first experiments on high resolution spectroscopy of trapped diatomic molecules.
Extending this work to polyatomic molecules provides unique opportunities due to more complex geometries and additional internal degrees of freedom.
arXiv Detail & Related papers (2021-10-21T15:46:17Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum sensing.
We show theoretical sensitivity to magnetic field on the pT/sqrt(Hz) level is possible using a diamond with an optimal density of NV centers.
arXiv Detail & Related papers (2021-01-22T18:58:05Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Probabilistic magnetometry with two-spin system in diamond [4.965114253725413]
We show that the hyperfine coupling between the Nitrogen-Vacancy and a nearby Carbon-13 can be used to set a post-selection protocol.
We found that for an isotopically purified sample the detection of weak magnetic fields in the $mu$T range can be achieved with a sensitivity of few nTHz$-1/2$ at cryogenic temperature ($4$ K)
arXiv Detail & Related papers (2020-03-26T14:06:46Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.