Probing the limitations of multimodal language models for chemistry and materials research
- URL: http://arxiv.org/abs/2411.16955v1
- Date: Mon, 25 Nov 2024 21:51:45 GMT
- Title: Probing the limitations of multimodal language models for chemistry and materials research
- Authors: Nawaf Alampara, Mara Schilling-Wilhelmi, Martiño Ríos-García, Indrajeet Mandal, Pranav Khetarpal, Hargun Singh Grover, N. M. Anoop Krishnan, Kevin Maik Jablonka,
- Abstract summary: We introduce MaCBench, a benchmark for evaluating how vision-language models handle real-world chemistry and materials science tasks.
We find that while these systems show promising capabilities in basic perception tasks, they exhibit fundamental limitations in spatial reasoning, cross-modal information synthesis, and logical inference.
Our insights have important implications beyond chemistry and materials science, suggesting that developing reliable multimodal AI scientific assistants may require advances in curating suitable training data and approaches to training those models.
- Score: 3.422786943576035
- License:
- Abstract: Recent advancements in artificial intelligence have sparked interest in scientific assistants that could support researchers across the full spectrum of scientific workflows, from literature review to experimental design and data analysis. A key capability for such systems is the ability to process and reason about scientific information in both visual and textual forms - from interpreting spectroscopic data to understanding laboratory setups. Here, we introduce MaCBench, a comprehensive benchmark for evaluating how vision-language models handle real-world chemistry and materials science tasks across three core aspects: data extraction, experimental understanding, and results interpretation. Through a systematic evaluation of leading models, we find that while these systems show promising capabilities in basic perception tasks - achieving near-perfect performance in equipment identification and standardized data extraction - they exhibit fundamental limitations in spatial reasoning, cross-modal information synthesis, and multi-step logical inference. Our insights have important implications beyond chemistry and materials science, suggesting that developing reliable multimodal AI scientific assistants may require advances in curating suitable training data and approaches to training those models.
Related papers
- Causal Representation Learning from Multimodal Biological Observations [57.00712157758845]
We aim to develop flexible identification conditions for multimodal data.
We establish identifiability guarantees for each latent component, extending the subspace identification results from prior work.
Our key theoretical ingredient is the structural sparsity of the causal connections among distinct modalities.
arXiv Detail & Related papers (2024-11-10T16:40:27Z) - MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding [59.41495657570397]
This dataset includes figures such as schematic diagrams, simulated images, macroscopic/microscopic photos, and experimental visualizations.
We developed benchmarks for scientific figure captioning and multiple-choice questions, evaluating six proprietary and over ten open-source models.
The dataset and benchmarks will be released to support further research.
arXiv Detail & Related papers (2024-07-06T00:40:53Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
We propose to enhance the knowledge-driven, abstract reasoning abilities of Large Language Models with the computational strength of simulations.
We introduce Scientific Generative Agent (SGA), a bilevel optimization framework.
We conduct experiments to demonstrate our framework's efficacy in law discovery and molecular design.
arXiv Detail & Related papers (2024-05-16T03:04:10Z) - An Autonomous Large Language Model Agent for Chemical Literature Data
Mining [60.85177362167166]
We introduce an end-to-end AI agent framework capable of high-fidelity extraction from extensive chemical literature.
Our framework's efficacy is evaluated using accuracy, recall, and F1 score of reaction condition data.
arXiv Detail & Related papers (2024-02-20T13:21:46Z) - Diverse Explanations From Data-Driven and Domain-Driven Perspectives in the Physical Sciences [4.442043151145212]
This Perspective explores the sources and implications of diverse explanations in machine learning applications for physical sciences.
We examine how different models, explanation methods, levels of feature attribution, and stakeholder needs can result in varying interpretations of ML outputs.
Our analysis underscores the importance of considering multiple perspectives when interpreting ML models in scientific contexts.
arXiv Detail & Related papers (2024-02-01T05:28:28Z) - Agent-based Learning of Materials Datasets from Scientific Literature [0.0]
We develop a chemist AI agent, powered by large language models (LLMs), to create structured datasets from natural language text.
Our chemist AI agent, Eunomia, can plan and execute actions by leveraging the existing knowledge from decades of scientific research articles.
arXiv Detail & Related papers (2023-12-18T20:29:58Z) - Multimodal Deep Learning for Scientific Imaging Interpretation [0.0]
This study presents a novel methodology to linguistically emulate and evaluate human-like interactions with Scanning Electron Microscopy (SEM) images.
Our approach distills insights from both textual and visual data harvested from peer-reviewed articles.
Our model (GlassLLaVA) excels in crafting accurate interpretations, identifying key features, and detecting defects in previously unseen SEM images.
arXiv Detail & Related papers (2023-09-21T20:09:22Z) - ChemVise: Maximizing Out-of-Distribution Chemical Detection with the
Novel Application of Zero-Shot Learning [60.02503434201552]
This research proposes learning approximations of complex exposures from training sets of simple ones.
We demonstrate this approach to synthetic sensor responses surprisingly improves the detection of out-of-distribution obscured chemical analytes.
arXiv Detail & Related papers (2023-02-09T20:19:57Z) - Interpretable and Explainable Machine Learning for Materials Science and
Chemistry [2.2175470459999636]
We summarize applications of interpretability and explainability techniques for materials science and chemistry.
We discuss various challenges for interpretable machine learning in materials science and, more broadly, in scientific settings.
We showcase a number of exciting developments in other fields that could benefit interpretability in material science and chemistry problems.
arXiv Detail & Related papers (2021-11-01T15:40:36Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z) - A user-centered approach to designing an experimental laboratory data
platform [0.0]
We take a user-centered approach to understand what essential elements of design and functionality researchers want in an experimental data platform.
We find that having the capability to contextualize rich, complex experimental datasets is the primary user requirement.
arXiv Detail & Related papers (2020-07-28T19:26:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.