EvoChain: a Recovery Approach for Permissioned Blockchain Applications
- URL: http://arxiv.org/abs/2411.16976v1
- Date: Mon, 25 Nov 2024 23:02:17 GMT
- Title: EvoChain: a Recovery Approach for Permissioned Blockchain Applications
- Authors: Francisco Faria, Samih Eisa, David R. Matos, Miguel L. Pardal,
- Abstract summary: This article presents EvoChain, a chaincode framework extension introducing controlled mutability for data redaction and recovery under time-limited or specific conditions.
We validated our approach using WineTracker, a Hyperledger Fabric-based supply chain application.
- Score: 7.094737268994282
- License:
- Abstract: Blockchain technology supports decentralized, consensus-driven data storage and processing, ensuring integrity and auditability. It is increasingly adopted for use cases with multiple stakeholders with shared ownership scenarios like digital identity and supply chain management. However, real-world deployments face challenges with mistakes and intrusions. This article presents EvoChain, a chaincode framework extension introducing controlled mutability for data redaction and recovery under time-limited or specific conditions. This mechanism allows corrections during a grace period before immutability takes effect. We validated our approach using WineTracker, a Hyperledger Fabric-based supply chain application. It enables some users to cancel unwanted operations while preserving the blockchain security and maintaining data consistency. Performance evaluations showed minimal overhead with functional benefits.
Related papers
- SPOQchain: Platform for Secure, Scalable, and Privacy-Preserving Supply Chain Tracing and Counterfeit Protection [46.68279506084277]
This work proposes SPOQchain, a novel blockchain-based platform that provides comprehensive traceability and originality verification.
It provides an analysis of privacy and security aspects, demonstrating the need and qualification of SPOQchain for the future of supply chain tracing.
arXiv Detail & Related papers (2024-08-30T07:15:43Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - RollupTheCrowd: Leveraging ZkRollups for a Scalable and Privacy-Preserving Reputation-based Crowdsourcing Platform [2.90114256542208]
Current blockchain-based reputation solutions for crowdsourcing fail to tackle the challenge of ensuring both efficiency and privacy without compromising the scalability of the blockchain.
This paper introduces RollupTheCrowd, a novel blockchain-powered crowdsourcing framework that leverages zkRollups to enhance system scalability while protecting user privacy.
Our framework includes an effective and privacy-preserving reputation model that gauges workers' trustworthiness by assessing their crowdsourcing interactions.
arXiv Detail & Related papers (2024-07-02T12:51:32Z) - Maximizing Blockchain Performance: Mitigating Conflicting Transactions through Parallelism and Dependency Management [0.18641315013048293]
"Conflicting transactions" contribute to high network latency and transaction failures.
We present a novel scheme that integrates transaction parallelism and an intelligent dependency manager.
Results show that our scheme outperforms both existing parallel and non-parallel Hyperledger Fabric blockchain networks.
arXiv Detail & Related papers (2024-07-01T16:17:33Z) - FACOS: Enabling Privacy Protection Through Fine-Grained Access Control with On-chain and Off-chain System [11.901770945295391]
We propose a permissioned blockchain-based privacy-preserving fine-grained access control on-chain and off-chain system, namely FACOS.
Compared to similar work that only stores encrypted data in centralized or non-fault-tolerant IPFS systems, we enhanced off-chain data storage security and robustness.
arXiv Detail & Related papers (2024-06-06T02:23:12Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0 [59.94605620983965]
We design a Graph Attention Network (GAT)-based reliable block propagation optimization framework for blockchain-enabled Web 3.0.
To achieve the reliability of block propagation, we introduce a reputation mechanism based on the subjective logic model.
Considering that the GAT possesses the excellent ability to process graph-structured data, we utilize the GAT with reinforcement learning to obtain the optimal block propagation trajectory.
arXiv Detail & Related papers (2024-03-20T01:58:38Z) - chainBoost: A Secure Performance Booster for Blockchain-based Resource Markets [0.6383640665055312]
We propose chainBoost, a secure performance booster for decentralized resource markets.
It expedites service related operations, reduces the blockchain size, and supports flexible service-payment exchange modalities at low overhead.
We implement a proof-of-concept prototype for a distributed file storage market as a use case.
arXiv Detail & Related papers (2024-02-25T14:19:41Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - Enabling Data Confidentiality with Public Blockchains [5.749927436954179]
Multi-Authority Approach to Transaction Systems for Interoperating Applications (MARTSIA)
MARTSIA enables read-access control over shared data at the level of message parts.
Based on Multi-Authority Attribute-Based Encryption (MA-ABE), MARTSIA enables read-access control over shared data at the level of message parts.
arXiv Detail & Related papers (2023-08-04T13:21:48Z) - Identifying contributors to supply chain outcomes in a multi-echelon setting: a decentralised approach [47.00450933765504]
We propose the use of explainable artificial intelligence for decentralised computing of estimated contributions to a metric of interest.
This approach mitigates the need to convince supply chain actors to share data, as all computations occur in a decentralised manner.
Results demonstrate the effectiveness of our approach in detecting the source of quality variations compared to a centralised approach.
arXiv Detail & Related papers (2023-07-22T20:03:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.