Tower of Structured Excited States from Measurements
- URL: http://arxiv.org/abs/2411.17020v1
- Date: Tue, 26 Nov 2024 01:07:46 GMT
- Title: Tower of Structured Excited States from Measurements
- Authors: Yuxuan Guo, Yuto Ashida,
- Abstract summary: We introduce a log-depth protocol leveraging quantum phase estimation to measure a global observable.
We demonstrate its capability to prepare towers of structured excited states that are useful in quantum metrology.
Our results expand the utility of measurement-based approaches to accessing highly entangled states in quantum many-body systems.
- Score: 0.07673339435080445
- License:
- Abstract: Preparing highly entangled quantum states is a key challenge in quantum metrology and quantum information science. Measurements, especially those of global observables, offer a simple and efficient way to generate entanglement between subsystems when they are measured as a whole. We introduce a log-depth protocol leveraging quantum phase estimation to measure a global observable, such as total magnetization and momentum. We demonstrate its capability to prepare towers of structured excited states that are useful in quantum metrology; examples include quantum many-body scars in various models, including the Affleck-Kennedy-Lieb-Tasaki (AKLT) model, the constrained domain-wall model, and the spin-$\frac{1}{2}$ and spin-$1$ XX chains. The same method is also applicable to preparing the Dicke states of high weight. In addition, we propose a protocol for momentum measurement that avoids disturbing the system, facilitating the preparation of states beyond the above construction, such as the Arovas $A$ state of the AKLT Hamiltonian. Our results expand the utility of measurement-based approaches to accessing highly entangled states in quantum many-body systems.
Related papers
- Generalized Parity Measurements and Efficient Large Multi-component Cat State Preparation with Quantum Signal Processing [0.0]
Generalized parity measurements are instrumental for the preparation of non-trivial quantum states.
We show a proposal for efficient and robust generalized parity measurements based on Quantum Signal Processing.
arXiv Detail & Related papers (2024-09-08T18:47:22Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Deterministic constant-depth preparation of the AKLT state on a quantum
processor using fusion measurements [0.2007262412327553]
The ground state of the spin-1 Affleck, Kennedy, Lieb and TasakiAKLT model is a paradigmatic example of both a matrix product state and a symmetry-protected topological phase.
Having a nonzero correlation length, the AKLT state cannot be exactly prepared by a constant-depth unitary circuit composed of local gates.
We demonstrate that this no-go limit can be evaded by augmenting a constant-depth circuit with fusion measurements.
arXiv Detail & Related papers (2022-10-31T17:58:01Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
We adapt common neural network models to learn complex groundstate wavefunctions for several molecular qubit Hamiltonians.
We find that using a neural network model provides a robust improvement over using single-copy measurement outcomes alone to reconstruct observables.
arXiv Detail & Related papers (2022-06-30T17:45:05Z) - Regression of high dimensional angular momentum states of light [47.187609203210705]
We present an approach to reconstruct input OAM states from measurements of the spatial intensity distributions they produce.
We showcase our approach in a real photonic setup, generating up-to-four-dimensional OAM states through a quantum walk dynamics.
arXiv Detail & Related papers (2022-06-20T16:16:48Z) - Adaptive Quantum State Tomography with Active Learning [0.0]
We propose and implement an efficient scheme for quantum state tomography using active learning.
We apply the scheme to reconstruct different multi-qubit states with varying degree of entanglement as well as to ground states of the XXZ model in 1D and a kinetically constrained spin chain.
Our scheme is highly relevant to gain physical insights in quantum many-body systems as well as for benchmarking and characterizing quantum devices.
arXiv Detail & Related papers (2022-03-29T16:23:10Z) - Overlapped grouping measurement: A unified framework for measuring
quantum states [2.1166716158060104]
We propose a unified framework of quantum measurements, incorporating advanced measurement methods as special cases.
An intuitive understanding of the scheme is to partition the measurements into overlapped groups with each one consisting of compatible measurements.
Our numerical result shows significant improvements over existing schemes.
arXiv Detail & Related papers (2021-05-27T12:38:18Z) - Observing a Topological Transition in Weak-Measurement-Induced Geometric
Phases [55.41644538483948]
Weak measurements in particular, through their back-action on the system, may enable various levels of coherent control.
We measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength.
Our results open new horizons for measurement-enabled quantum control of many-body topological states.
arXiv Detail & Related papers (2021-02-10T19:00:00Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.