Path-RAG: Knowledge-Guided Key Region Retrieval for Open-ended Pathology Visual Question Answering
- URL: http://arxiv.org/abs/2411.17073v1
- Date: Tue, 26 Nov 2024 03:22:01 GMT
- Title: Path-RAG: Knowledge-Guided Key Region Retrieval for Open-ended Pathology Visual Question Answering
- Authors: Awais Naeem, Tianhao Li, Huang-Ru Liao, Jiawei Xu, Aby M. Mathew, Zehao Zhu, Zhen Tan, Ajay Kumar Jaiswal, Raffi A. Salibian, Ziniu Hu, Tianlong Chen, Ying Ding,
- Abstract summary: We propose a novel framework named Path-RAG to retrieve relevant domain knowledge from pathology images.
Our experiments suggest that domain guidance can significantly boost the accuracy of LLaVA-Med from 38% to 47%.
For longer-form question and answer pairs, our model consistently achieves significant improvements of 32.5% in ARCH-Open PubMed and 30.6% in ARCH-Open Books on H&E images.
- Score: 38.86674352317965
- License:
- Abstract: Accurate diagnosis and prognosis assisted by pathology images are essential for cancer treatment selection and planning. Despite the recent trend of adopting deep-learning approaches for analyzing complex pathology images, they fall short as they often overlook the domain-expert understanding of tissue structure and cell composition. In this work, we focus on a challenging Open-ended Pathology VQA (PathVQA-Open) task and propose a novel framework named Path-RAG, which leverages HistoCartography to retrieve relevant domain knowledge from pathology images and significantly improves performance on PathVQA-Open. Admitting the complexity of pathology image analysis, Path-RAG adopts a human-centered AI approach by retrieving domain knowledge using HistoCartography to select the relevant patches from pathology images. Our experiments suggest that domain guidance can significantly boost the accuracy of LLaVA-Med from 38% to 47%, with a notable gain of 28% for H&E-stained pathology images in the PathVQA-Open dataset. For longer-form question and answer pairs, our model consistently achieves significant improvements of 32.5% in ARCH-Open PubMed and 30.6% in ARCH-Open Books on H\&E images. Our code and dataset is available here (https://github.com/embedded-robotics/path-rag).
Related papers
- HistoGym: A Reinforcement Learning Environment for Histopathological Image Analysis [9.615399811006034]
HistoGym aims to foster whole slide image diagnosis by mimicking the real-life processes of doctors.
We offer various scenarios for different organs and cancers, including both WSI-based and selected region-based scenarios.
arXiv Detail & Related papers (2024-08-16T17:19:07Z) - Anatomy-guided Pathology Segmentation [56.883822515800205]
We develop a generalist segmentation model that combines anatomical and pathological information, aiming to enhance the segmentation accuracy of pathological features.
Our Anatomy-Pathology Exchange (APEx) training utilizes a query-based segmentation transformer which decodes a joint feature space into query-representations for human anatomy.
In doing so, we are able to report the best results across the board on FDG-PET-CT and Chest X-Ray pathology segmentation tasks with a margin of up to 3.3% as compared to strong baseline methods.
arXiv Detail & Related papers (2024-07-08T11:44:15Z) - PathoWAve: A Deep Learning-based Weight Averaging Method for Improving Domain Generalization in Histopathology Images [13.362177469092963]
We introduce Pathology Weight Averaging (PathoWAve) to tackle domain shift phenomenon in histopathology image analysis.
Our results on Camelyon17 WILDS dataset demonstrate PathoWAve's superiority over previous proposed methods.
arXiv Detail & Related papers (2024-06-21T23:25:44Z) - Knowledge-enhanced Visual-Language Pretraining for Computational Pathology [68.6831438330526]
We consider the problem of visual representation learning for computational pathology, by exploiting large-scale image-text pairs gathered from public resources.
We curate a pathology knowledge tree that consists of 50,470 informative attributes for 4,718 diseases requiring pathology diagnosis from 32 human tissues.
arXiv Detail & Related papers (2024-04-15T17:11:25Z) - Siamese Content-based Search Engine for a More Transparent Skin and
Breast Cancer Diagnosis through Histological Imaging [1.927195358774599]
We propose two CBHIR approaches on breast (Breast-twins) and skin cancer (Skin-twins) data sets for robust and accurate patch-level retrieval.
The Breast-twins model achieves 70% of the F1score at the top first, which exceeds the other state-of-the-art methods at a higher amount of K.
arXiv Detail & Related papers (2024-01-16T10:51:55Z) - Machine Learning Methods for Histopathological Image Analysis: A Review [62.14548392474976]
Histopathological images (HIs) are the gold standard for evaluating some types of tumors for cancer diagnosis.
One of the ways of accelerating such an analysis is to use computer-aided diagnosis (CAD) systems.
arXiv Detail & Related papers (2021-02-07T19:12:32Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - PathVQA: 30000+ Questions for Medical Visual Question Answering [15.343890121216335]
This is the first dataset for pathology VQA. To our best knowledge, this is the first dataset for pathology VQA. Our dataset will be released publicly to promote research in medical VQA.
arXiv Detail & Related papers (2020-03-07T17:55:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.