論文の概要: PassionSR: Post-Training Quantization with Adaptive Scale in One-Step Diffusion based Image Super-Resolution
- arxiv url: http://arxiv.org/abs/2411.17106v1
- Date: Tue, 26 Nov 2024 04:49:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:35:14.297305
- Title: PassionSR: Post-Training Quantization with Adaptive Scale in One-Step Diffusion based Image Super-Resolution
- Title(参考訳): PassionSR: 1ステップ拡散に基づく画像超解像における適応スケールによる後評価量子化
- Authors: Libo Zhu, Jianze Li, Haotong Qin, Yulun Zhang, Yong Guo, Xiaokang Yang,
- Abstract要約: 拡散に基づく画像超解像(SR)モデルでは、複数のデノナイジングステップのコストで優れた性能を示す。
本稿では,一段階拡散(OSD)画像SR,PassionSRにおける適応スケールの学習後量子化手法を提案する。
我々のPassionSRは、画像SRの最近の先進的な低ビット量子化法に対して大きな利点がある。
- 参考スコア(独自算出の注目度): 87.89013794655207
- License:
- Abstract: Diffusion-based image super-resolution (SR) models have shown superior performance at the cost of multiple denoising steps. However, even though the denoising step has been reduced to one, they require high computational costs and storage requirements, making it difficult for deployment on hardware devices. To address these issues, we propose a novel post-training quantization approach with adaptive scale in one-step diffusion (OSD) image SR, PassionSR. First, we simplify OSD model to two core components, UNet and Variational Autoencoder (VAE) by removing the CLIPEncoder. Secondly, we propose Learnable Boundary Quantizer (LBQ) and Learnable Equivalent Transformation (LET) to optimize the quantization process and manipulate activation distributions for better quantization. Finally, we design a Distributed Quantization Calibration (DQC) strategy that stabilizes the training of quantized parameters for rapid convergence. Comprehensive experiments demonstrate that PassionSR with 8-bit and 6-bit obtains comparable visual results with full-precision model. Moreover, our PassionSR achieves significant advantages over recent leading low-bit quantization methods for image SR. Our code will be at https://github.com/libozhu03/PassionSR.
- Abstract(参考訳): 拡散に基づく画像超解像(SR)モデルでは、複数のデノナイジングステップのコストで優れた性能を示す。
しかし、デノナイジングステップは1つに縮小されているものの、高い計算コストとストレージ要求が要求されるため、ハードウェアデバイスへのデプロイが困難である。
これらの問題に対処するために,一段階拡散(OSD)画像SR,PassionSRにおける適応スケールの学習後量子化手法を提案する。
まず,OSDモデルをCLIPEncoderを除去することにより,UNetとVAEの2つのコアコンポーネントに単純化する。
次に,LBQ(Learable boundary Quantizer)とLET(Learable Equivalent Transformation)を提案する。
最後に、高速収束のための量子化パラメータのトレーニングを安定化する分散量子化校正(DQC)戦略を設計する。
包括的実験により、8ビットと6ビットのPassionSRは、完全精度モデルと同等の視覚的結果が得られることが示された。
さらに、我々のPassionSRは、画像SRの最近のリードロービット量子化法よりも大きな利点を達成している。
私たちのコードはhttps://github.com/libozhu03/PassionSRです。
関連論文リスト
- An Analysis on Quantizing Diffusion Transformers [19.520194468481655]
ポストトレーニング量子化(PTQ)は、より小さなストレージサイズと推論時のメモリ効率の高い計算に対する即時対策を提供する。
低ビット量子化のために,アクティベーションの単一ステップサンプリング校正と重みのグループワイド量子化を提案する。
論文 参考訳(メタデータ) (2024-06-16T23:18:35Z) - 2DQuant: Low-bit Post-Training Quantization for Image Super-Resolution [83.09117439860607]
低ビット量子化は、エッジ展開のための画像超解像(SR)モデルを圧縮するために広く普及している。
低ビット量子化は、フル精度(FP)と比較してSRモデルの精度を低下させることが知られている。
本稿では2DQuantという画像超解像のための2段階の低ビット後量子化(PTQ)法を提案する。
論文 参考訳(メタデータ) (2024-06-10T06:06:11Z) - Binarized Diffusion Model for Image Super-Resolution [61.963833405167875]
超圧縮アルゴリズムであるバイナリ化は、高度な拡散モデル(DM)を効果的に加速する可能性を提供する
既存の二項化法では性能が著しく低下する。
画像SRのための新しいバイナライズ拡散モデルBI-DiffSRを提案する。
論文 参考訳(メタデータ) (2024-06-09T10:30:25Z) - RepQuant: Towards Accurate Post-Training Quantization of Large
Transformer Models via Scale Reparameterization [8.827794405944637]
ポストトレーニング量子化(PTQ)は、大きなトランスモデルを圧縮するための有望な解である。
既存のPTQメソッドは、通常、非自明な性能損失を示す。
本稿では、量子化推論デカップリングパラダイムを備えた新しいPTQフレームワークRepQuantを提案する。
論文 参考訳(メタデータ) (2024-02-08T12:35:41Z) - SinSR: Diffusion-Based Image Super-Resolution in a Single Step [119.18813219518042]
拡散モデルに基づく超解像(SR)法は有望な結果を示す。
しかし、それらの実践的応用は、必要な推論ステップのかなりの数によって妨げられている。
本稿では,SinSRという単一ステップのSR生成を実現するための,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2023-11-23T16:21:29Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN)は、ダウンスケーリングとアップスケーリングのサイクルを共同で最適化することにより、アップスケーリングの精度を大幅に向上させることができる。
本研究の1つのモデルのみをトレーニングすることにより、任意の画像再スケーリングを実現するために、単純で効果的な非可逆的再スケーリングネットワーク(IARN)を提案する。
LR出力の知覚品質を損なうことなく、双方向任意再スケーリングにおいて最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2022-09-26T22:22:30Z) - Perception-Distortion Balanced ADMM Optimization for Single-Image
Super-Resolution [29.19388490351459]
低周波制約(LFc-SR)を持つ新しい超解像モデルを提案する。
制約付きモデルの非自明な学習のためのADMMに基づく交互最適化手法を提案する。
実験の結果,提案手法は加工後処理の煩雑さを伴わず,最先端の性能を達成できた。
論文 参考訳(メタデータ) (2022-08-05T05:37:55Z) - Fully Quantized Image Super-Resolution Networks [81.75002888152159]
効率と精度を両立させるためのフル量子化画像超解像フレームワーク(FQSR)を提案する。
我々は、SRResNet、SRGAN、EDSRを含む複数の主流超解像アーキテクチャに量子化スキームを適用した。
低ビット量子化を用いたFQSRは、5つのベンチマークデータセットの完全精度と比較すると、パー性能で実現できる。
論文 参考訳(メタデータ) (2020-11-29T03:53:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。