DOGR: Towards Versatile Visual Document Grounding and Referring
- URL: http://arxiv.org/abs/2411.17125v3
- Date: Wed, 06 Aug 2025 10:02:43 GMT
- Title: DOGR: Towards Versatile Visual Document Grounding and Referring
- Authors: Yinan Zhou, Yuxin Chen, Haokun Lin, Yichen Wu, Shuyu Yang, Zhongang Qi, Chen Ma, Li Zhu, Ying Shan,
- Abstract summary: Grounding and referring capabilities have gained increasing attention for achieving detailed understanding and flexible user interaction.<n>We propose the DOcument Grounding and Referring data engine (DOGR-Engine), which generates two types of high-quality fine-grained document data.<n>Using the DOGR-Engine, we construct DOGR-Bench, a benchmark covering seven grounding and referring tasks across three document types.
- Score: 47.66205811791444
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With recent advances in Multimodal Large Language Models (MLLMs), grounding and referring capabilities have gained increasing attention for achieving detailed understanding and flexible user interaction. However, these capabilities still remain underdeveloped in visual document understanding due to the scarcity of fine-grained datasets and comprehensive benchmarks. To fill this gap, we propose the DOcument Grounding and Referring data engine (DOGR-Engine), which generates two types of high-quality fine-grained document data: (1) multi-granular parsing data to improve text localization and recognition, and (2) instruction-tuning data to activate MLLMs' grounding and referring capabilities in dialogue and reasoning. Using the DOGR-Engine, we construct DOGR-Bench, a benchmark covering seven grounding and referring tasks across three document types (chart, poster, and PDF document), offering a comprehensive evaluation of fine-grained document understanding. Leveraging the generated data, we further develop DOGR, a strong baseline model that excels in text localization and recognition, while precisely grounds and refers to key textual information during conversation and reasoning, thereby advancing document understanding to a finer granularity and enable flexible interaction paradigms.
Related papers
- Docopilot: Improving Multimodal Models for Document-Level Understanding [87.60020625241178]
We present a high-quality document-level dataset, Doc-750K, designed to support in-depth understanding of multimodal documents.<n>This dataset includes diverse document structures, extensive cross-page dependencies, and real question-answer pairs derived from the original documents.<n>Building on the dataset, we develop a native multimodal model, Docopilot, which can accurately handle document-level dependencies without relying on RAG.
arXiv Detail & Related papers (2025-07-19T16:03:34Z) - DRISHTIKON: Visual Grounding at Multiple Granularities in Documents [21.376466879737855]
DRISHTIKON is a multi-granular and multi-block visual grounding framework.<n>Our approach integrates multilingual OCR, large language models, and a novel region matching algorithm to localize answer spans.<n>Our findings pave the way for more robust and interpretable document understanding systems.
arXiv Detail & Related papers (2025-06-26T14:32:23Z) - Adaptive Markup Language Generation for Contextually-Grounded Visual Document Understanding [42.506971197471195]
We introduce two fine-grained structured datasets: DocMark-Pile, comprising approximately 3.8M pretraining data pairs for document parsing, and DocMark-Instruct, featuring 624k fine-tuning data annotations for grounded instruction following.<n>Our proposed model significantly outperforms existing state-of-theart MLLMs across a range of visual document understanding benchmarks.
arXiv Detail & Related papers (2025-05-08T17:37:36Z) - Relation-Rich Visual Document Generator for Visual Information Extraction [12.4941229258054]
We propose a Relation-rIch visual Document GEnerator (RIDGE) that addresses these limitations through a two-stage approach.<n>Our method significantly enhances the performance of document understanding models on various VIE benchmarks.
arXiv Detail & Related papers (2025-04-14T19:19:26Z) - Towards Visual Text Grounding of Multimodal Large Language Model [88.0588924255417]
We introduce TRIG, a novel task with a newly designed instruction dataset for benchmarking text-rich image grounding.
Specifically, we propose an OCR-LLM-human interaction pipeline to create 800 manually annotated question-answer pairs as a benchmark.
A comprehensive evaluation of various MLLMs on our proposed benchmark exposes substantial limitations in their grounding capability on text-rich images.
arXiv Detail & Related papers (2025-04-07T12:01:59Z) - QID: Efficient Query-Informed ViTs in Data-Scarce Regimes for OCR-free Visual Document Understanding [53.69841526266547]
Fine-tuning a pre-trained Vision-Language Model with new datasets often falls short in optimizing the vision encoder.<n>We introduce QID, a novel, streamlined, architecture-preserving approach that integrates query embeddings into the vision encoder.
arXiv Detail & Related papers (2025-04-03T18:47:16Z) - M-DocSum: Do LVLMs Genuinely Comprehend Interleaved Image-Text in Document Summarization? [49.53982792497275]
We investigate whether Large Vision-Language Models (LVLMs) genuinely comprehend interleaved image-text in the document.<n>Existing document understanding benchmarks often assess LVLMs using question-answer formats.<n>We introduce a novel and challenging Multimodal Document Summarization Benchmark (M-DocSum-Bench)<n>M-DocSum-Bench comprises 500 high-quality arXiv papers, along with interleaved multimodal summaries aligned with human preferences.
arXiv Detail & Related papers (2025-03-27T07:28:32Z) - Exploring Multi-Grained Concept Annotations for Multimodal Large Language Models [55.25892137362187]
We introduce a new dataset featuring Multimodal Multi-Grained Concept annotations (MMGiC) for MLLMs.
Our analyses reveal that multi-grained concept annotations integrate and complement each other, under our structured template and a general MLLM framework.
We further validate our hypothesis by investigating the fair comparison and effective collaboration between MMGiC and image--caption data on 12 multimodal comprehension and generation benchmarks.
arXiv Detail & Related papers (2024-12-08T13:45:44Z) - Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Web-scale visual entity recognition presents significant challenges due to the lack of clean, large-scale training data.
We propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation.
Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks.
arXiv Detail & Related papers (2024-10-31T06:55:24Z) - VisRAG: Vision-based Retrieval-augmented Generation on Multi-modality Documents [66.42579289213941]
Retrieval-augmented generation (RAG) is an effective technique that enables large language models to utilize external knowledge sources for generation.
In this paper, we introduce VisRAG, which tackles this issue by establishing a vision-language model (VLM)-based RAG pipeline.
In this pipeline, instead of first parsing the document to obtain text, the document is directly embedded using a VLM as an image and then retrieved to enhance the generation of a VLM.
arXiv Detail & Related papers (2024-10-14T15:04:18Z) - FineCops-Ref: A new Dataset and Task for Fine-Grained Compositional Referring Expression Comprehension [10.482908189805872]
Referring Expression (REC) is a crucial cross-modal task that objectively evaluates the capabilities of language understanding, image comprehension, and language-to-image grounding.
We have established a new REC dataset characterized by two key features.
It includes negative text and images created through fine-grained editing and generation based on existing data.
arXiv Detail & Related papers (2024-09-23T06:56:51Z) - Reminding Multimodal Large Language Models of Object-aware Knowledge with Retrieved Tags [28.368960723666458]
Multimodal Large Language Models (MLLMs) struggle with critical problems when required to provide a precise and detailed response to a visual instruction.
We show effectiveness in mitigating these issues, but at an expensive cost of collecting a vast amount of new data.
We propose to enhance the mapping with retrieval-augmented tag tokens, which contain rich object-aware information.
arXiv Detail & Related papers (2024-06-16T08:20:12Z) - TextHawk: Exploring Efficient Fine-Grained Perception of Multimodal Large Language Models [9.232693392690702]
TextHawk is a document-oriented Multimodal Large Language Model (MLLM)
It is designed to explore efficient fine-grained perception by designing four dedicated components.
We conduct extensive experiments on both general and document-oriented MLLM benchmarks, and show that TextHawk outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-04-14T09:48:37Z) - A Semantic Mention Graph Augmented Model for Document-Level Event Argument Extraction [12.286432133599355]
Document-level Event Argument Extraction (DEAE) aims to identify arguments and their specific roles from an unstructured document.
advanced approaches on DEAE utilize prompt-based methods to guide pre-trained language models (PLMs) in extracting arguments from input documents.
We propose a semantic mention Graph Augmented Model (GAM) to address these two problems in this paper.
arXiv Detail & Related papers (2024-03-12T08:58:07Z) - EXMODD: An EXplanatory Multimodal Open-Domain Dialogue dataset [20.445453185198186]
We propose a Multimodal Data Construction Framework (MDCF) to alleviate the significant human and resource expenditure in data collection.
MDCF automatically provides explanation for a given image and its corresponding dialogue, which can provide a certain degree of interpretability.
Experiments indicate a positive correlation between the model's ability to generate accurate understandings and high-quality responses.
arXiv Detail & Related papers (2023-10-17T03:28:29Z) - AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators [98.11286353828525]
GPT-3.5 series models have demonstrated remarkable few-shot and zero-shot ability across various NLP tasks.
We propose AnnoLLM, which adopts a two-step approach, explain-then-annotate.
We build the first conversation-based information retrieval dataset employing AnnoLLM.
arXiv Detail & Related papers (2023-03-29T17:03:21Z) - SciREX: A Challenge Dataset for Document-Level Information Extraction [56.83748634747753]
It is challenging to create a large-scale information extraction dataset at the document level.
We introduce SciREX, a document level IE dataset that encompasses multiple IE tasks.
We develop a neural model as a strong baseline that extends previous state-of-the-art IE models to document-level IE.
arXiv Detail & Related papers (2020-05-01T17:30:10Z) - Cross-Domain Document Object Detection: Benchmark Suite and Method [71.4339949510586]
Document object detection (DOD) is fundamental for downstream tasks like intelligent document editing and understanding.
We investigate cross-domain DOD, where the goal is to learn a detector for the target domain using labeled data from the source domain and only unlabeled data from the target domain.
For each dataset, we provide the page images, bounding box annotations, PDF files, and the rendering layers extracted from the PDF files.
arXiv Detail & Related papers (2020-03-30T03:04:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.