A Semantic Mention Graph Augmented Model for Document-Level Event Argument Extraction
- URL: http://arxiv.org/abs/2403.09721v1
- Date: Tue, 12 Mar 2024 08:58:07 GMT
- Title: A Semantic Mention Graph Augmented Model for Document-Level Event Argument Extraction
- Authors: Jian Zhang, Changlin Yang, Haiping Zhu, Qika Lin, Fangzhi Xu, Jun Liu,
- Abstract summary: Document-level Event Argument Extraction (DEAE) aims to identify arguments and their specific roles from an unstructured document.
advanced approaches on DEAE utilize prompt-based methods to guide pre-trained language models (PLMs) in extracting arguments from input documents.
We propose a semantic mention Graph Augmented Model (GAM) to address these two problems in this paper.
- Score: 12.286432133599355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Document-level Event Argument Extraction (DEAE) aims to identify arguments and their specific roles from an unstructured document. The advanced approaches on DEAE utilize prompt-based methods to guide pre-trained language models (PLMs) in extracting arguments from input documents. They mainly concentrate on establishing relations between triggers and entity mentions within documents, leaving two unresolved problems: a) independent modeling of entity mentions; b) document-prompt isolation. To this end, we propose a semantic mention Graph Augmented Model (GAM) to address these two problems in this paper. Firstly, GAM constructs a semantic mention graph that captures relations within and between documents and prompts, encompassing co-existence, co-reference and co-type relations. Furthermore, we introduce an ensembled graph transformer module to address mentions and their three semantic relations effectively. Later, the graph-augmented encoder-decoder module incorporates the relation-specific graph into the input embedding of PLMs and optimizes the encoder section with topology information, enhancing the relations comprehensively. Extensive experiments on the RAMS and WikiEvents datasets demonstrate the effectiveness of our approach, surpassing baseline methods and achieving a new state-of-the-art performance.
Related papers
- Relation Rectification in Diffusion Model [64.84686527988809]
We introduce a novel task termed Relation Rectification, aiming to refine the model to accurately represent a given relationship it initially fails to generate.
We propose an innovative solution utilizing a Heterogeneous Graph Convolutional Network (HGCN)
The lightweight HGCN adjusts the text embeddings generated by the text encoder, ensuring the accurate reflection of the textual relation in the embedding space.
arXiv Detail & Related papers (2024-03-29T15:54:36Z) - Joint Entity and Relation Extraction with Span Pruning and Hypergraph
Neural Networks [58.43972540643903]
We propose HyperGraph neural network for ERE ($hgnn$), which is built upon the PL-marker (a state-of-the-art marker-based pipleline model)
To alleviate error propagation,we use a high-recall pruner mechanism to transfer the burden of entity identification and labeling from the NER module to the joint module of our model.
Experiments on three widely used benchmarks for ERE task show significant improvements over the previous state-of-the-art PL-marker.
arXiv Detail & Related papers (2023-10-26T08:36:39Z) - DocTr: Document Transformer for Structured Information Extraction in
Documents [36.1145541816468]
We present a new formulation for structured information extraction from visually rich documents.
It aims to address the limitations of existing IOB tagging or graph-based formulations.
We represent an entity as an anchor word and a bounding box, and represent entity linking as the association between anchor words.
arXiv Detail & Related papers (2023-07-16T02:59:30Z) - Document-Level Relation Extraction with Sentences Importance Estimation
and Focusing [52.069206266557266]
Document-level relation extraction (DocRE) aims to determine the relation between two entities from a document of multiple sentences.
We propose a Sentence Estimation and Focusing (SIEF) framework for DocRE, where we design a sentence importance score and a sentence focusing loss.
Experimental results on two domains show that our SIEF not only improves overall performance, but also makes DocRE models more robust.
arXiv Detail & Related papers (2022-04-27T03:20:07Z) - FactGraph: Evaluating Factuality in Summarization with Semantic Graph
Representations [114.94628499698096]
We propose FactGraph, a method that decomposes the document and the summary into structured meaning representations (MRs)
MRs describe core semantic concepts and their relations, aggregating the main content in both document and summary in a canonical form, and reducing data sparsity.
Experiments on different benchmarks for evaluating factuality show that FactGraph outperforms previous approaches by up to 15%.
arXiv Detail & Related papers (2022-04-13T16:45:33Z) - Document-level Relation Extraction as Semantic Segmentation [38.614931876015625]
Document-level relation extraction aims to extract relations among multiple entity pairs from a document.
This paper approaches the problem by predicting an entity-level relation matrix to capture local and global information.
We propose a Document U-shaped Network for document-level relation extraction.
arXiv Detail & Related papers (2021-06-07T13:44:44Z) - BASS: Boosting Abstractive Summarization with Unified Semantic Graph [49.48925904426591]
BASS is a framework for Boosting Abstractive Summarization based on a unified Semantic graph.
A graph-based encoder-decoder model is proposed to improve both the document representation and summary generation process.
Empirical results show that the proposed architecture brings substantial improvements for both long-document and multi-document summarization tasks.
arXiv Detail & Related papers (2021-05-25T16:20:48Z) - Document-Level Relation Extraction with Reconstruction [28.593318203728963]
We propose a novel encoder-classifier-reconstructor model for document-level relation extraction (DocRE)
The reconstructor reconstructs the ground-truth path dependencies from the graph representation, to ensure that the proposed DocRE model pays more attention to encode entity pairs with relationships in the training.
Experimental results on a large-scale DocRE dataset show that the proposed model can significantly improve the accuracy of relation extraction on a strong heterogeneous graph-based baseline.
arXiv Detail & Related papers (2020-12-21T14:29:31Z) - Double Graph Based Reasoning for Document-level Relation Extraction [29.19714611415326]
Document-level relation extraction aims to extract relations among entities within a document.
We propose Graph Aggregation-and-Inference Network (GAIN) featuring double graphs.
Experiments on the public dataset, DocRED, show GAIN achieves a significant performance improvement (2.85 on F1) over the previous state-of-the-art.
arXiv Detail & Related papers (2020-09-29T03:41:01Z) - Leveraging Graph to Improve Abstractive Multi-Document Summarization [50.62418656177642]
We develop a neural abstractive multi-document summarization (MDS) model which can leverage well-known graph representations of documents.
Our model utilizes graphs to encode documents in order to capture cross-document relations, which is crucial to summarizing long documents.
Our model can also take advantage of graphs to guide the summary generation process, which is beneficial for generating coherent and concise summaries.
arXiv Detail & Related papers (2020-05-20T13:39:47Z) - Reasoning with Latent Structure Refinement for Document-Level Relation
Extraction [20.308845516900426]
We propose a novel model that empowers the relational reasoning across sentences by automatically inducing the latent document-level graph.
Specifically, our model achieves an F1 score of 59.05 on a large-scale document-level dataset (DocRED)
arXiv Detail & Related papers (2020-05-13T13:36:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.