Crack Detection in Infrastructure Using Transfer Learning, Spatial Attention, and Genetic Algorithm Optimization
- URL: http://arxiv.org/abs/2411.17140v1
- Date: Tue, 26 Nov 2024 06:12:56 GMT
- Title: Crack Detection in Infrastructure Using Transfer Learning, Spatial Attention, and Genetic Algorithm Optimization
- Authors: Feng Ding,
- Abstract summary: Crack detection plays a pivotal role in the maintenance and safety of infrastructure, including roads, bridges, and buildings.
Traditionally, manual inspection has been the norm, but it is labor-intensive, subjective, and hazardous.
This paper introduces an advanced approach for crack detection in infrastructure using deep learning, leveraging transfer learning, spatial attention mechanisms, and genetic algorithm(GA) optimization.
- Score: 3.1687473999848836
- License:
- Abstract: Crack detection plays a pivotal role in the maintenance and safety of infrastructure, including roads, bridges, and buildings, as timely identification of structural damage can prevent accidents and reduce costly repairs. Traditionally, manual inspection has been the norm, but it is labor-intensive, subjective, and hazardous. This paper introduces an advanced approach for crack detection in infrastructure using deep learning, leveraging transfer learning, spatial attention mechanisms, and genetic algorithm(GA) optimization. To address the challenge of the inaccessability of large amount of data, we employ ResNet50 as a pre-trained model, utilizing its strong feature extraction capabilities while reducing the need for extensive training datasets. We enhance the model with a spatial attention layer as well as a customized neural network which architecture was fine-tuned using GA. A comprehensive case study demonstrates the effectiveness of the proposed Attention-ResNet50-GA model, achieving a precision of 0.9967 and an F1 score of 0.9983, outperforming conventional methods. The results highlight the model's ability to accurately detect cracks in various conditions, making it highly suitable for real-world applications where large annotated datasets are scarce.
Related papers
- Revisiting Deep Feature Reconstruction for Logical and Structural Industrial Anomaly Detection [2.3020018305241337]
Industrial anomaly detection is crucial for quality control and predictive maintenance.
Existing methods commonly detect structural anomalies, such as dents and scratches, by leveraging multi-scale features from image patches extracted through deep pre-trained networks.
We address these limitations by focusing on Deep Feature Reconstruction (DFR), a memory- and compute-efficient approach for detecting structural anomalies.
We further enhance DFR into a unified framework, called ULSAD, which is capable of detecting both structural and logical anomalies.
arXiv Detail & Related papers (2024-10-21T17:56:47Z) - Hybrid-Segmentor: A Hybrid Approach to Automated Fine-Grained Crack Segmentation in Civil Infrastructure [52.2025114590481]
We introduce Hybrid-Segmentor, an encoder-decoder based approach that is capable of extracting both fine-grained local and global crack features.
This allows the model to improve its generalization capabilities in distinguish various type of shapes, surfaces and sizes of cracks.
The proposed model outperforms existing benchmark models across 5 quantitative metrics (accuracy 0.971, precision 0.804, recall 0.744, F1-score 0.770, and IoU score 0.630), achieving state-of-the-art status.
arXiv Detail & Related papers (2024-09-04T16:47:16Z) - High-Resolution Detection of Earth Structural Heterogeneities from Seismic Amplitudes using Convolutional Neural Networks with Attention layers [0.31457219084519]
We propose an efficient and cost-effective architecture for detecting seismic structural heterogeneities using Convolutional Neural Networks (CNNs) combined with Attention layers.
Our model has half the parameters compared to the state-of-the-art, and it outperforms previous methods in terms of Intersection over Union (IoU) by 0.6% and precision by 0.4%.
arXiv Detail & Related papers (2024-04-15T22:49:37Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - Concrete Surface Crack Detection with Convolutional-based Deep Learning
Models [0.0]
Crack detection is pivotal for structural health monitoring and inspection of buildings.
Convolutional neural networks (CNNs) have emerged as a promising framework for crack detection.
We employ fine-tuning techniques on pre-trained deep learning architectures.
arXiv Detail & Related papers (2024-01-13T17:31:12Z) - A Computer Vision Enabled damage detection model with improved YOLOv5
based on Transformer Prediction Head [0.0]
Current state-of-the-art deep learning (DL)-based damage detection models often lack superior feature extraction capability in complex and noisy environments.
DenseSPH-YOLOv5 is a real-time DL-based high-performance damage detection model where DenseNet blocks have been integrated with the backbone.
DenseSPH-YOLOv5 obtains a mean average precision (mAP) value of 85.25 %, F1-score of 81.18 %, and precision (P) value of 89.51 % outperforming current state-of-the-art models.
arXiv Detail & Related papers (2023-03-07T22:53:36Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Interpretability in Convolutional Neural Networks for Building Damage
Classification in Satellite Imagery [0.0]
We use a dataset that includes labeled pre- and post-disaster satellite imagery to assess building damage on a per-building basis.
We train multiple convolutional neural networks (CNNs) to assess building damage on a per-building basis.
Our research seeks to computationally contribute to aiding in this ongoing and growing humanitarian crisis, heightened by anthropogenic climate change.
arXiv Detail & Related papers (2022-01-24T16:55:56Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
We show that perturbations in the latent space can be used to define fully unsupervised data augmentations.
We find that our latent adversarial perturbations adaptive to the classifier throughout its training are most effective.
arXiv Detail & Related papers (2021-08-18T03:20:00Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.