Learning Hierarchical Polynomials of Multiple Nonlinear Features with Three-Layer Networks
- URL: http://arxiv.org/abs/2411.17201v1
- Date: Tue, 26 Nov 2024 08:14:48 GMT
- Title: Learning Hierarchical Polynomials of Multiple Nonlinear Features with Three-Layer Networks
- Authors: Hengyu Fu, Zihao Wang, Eshaan Nichani, Jason D. Lee,
- Abstract summary: In deep learning theory, a critical question is to understand how neural networks learn hierarchical features.
In this work, we study the learning of hierarchicals of textitmultiple nonlinear features using three-layer neural networks.
- Score: 46.190882811878744
- License:
- Abstract: In deep learning theory, a critical question is to understand how neural networks learn hierarchical features. In this work, we study the learning of hierarchical polynomials of \textit{multiple nonlinear features} using three-layer neural networks. We examine a broad class of functions of the form $f^{\star}=g^{\star}\circ \bp$, where $\bp:\mathbb{R}^{d} \rightarrow \mathbb{R}^{r}$ represents multiple quadratic features with $r \ll d$ and $g^{\star}:\mathbb{R}^{r}\rightarrow \mathbb{R}$ is a polynomial of degree $p$. This can be viewed as a nonlinear generalization of the multi-index model \citep{damian2022neural}, and also an expansion upon previous work that focused only on a single nonlinear feature, i.e. $r = 1$ \citep{nichani2023provable,wang2023learning}. Our primary contribution shows that a three-layer neural network trained via layerwise gradient descent suffices for \begin{itemize}\item complete recovery of the space spanned by the nonlinear features \item efficient learning of the target function $f^{\star}=g^{\star}\circ \bp$ or transfer learning of $f=g\circ \bp$ with a different link function \end{itemize} within $\widetilde{\cO}(d^4)$ samples and polynomial time. For such hierarchical targets, our result substantially improves the sample complexity ${\Theta}(d^{2p})$ of the kernel methods, demonstrating the power of efficient feature learning. It is important to highlight that{ our results leverage novel techniques and thus manage to go beyond all prior settings} such as single-index and multi-index models as well as models depending just on one nonlinear feature, contributing to a more comprehensive understanding of feature learning in deep learning.
Related papers
- Learning sum of diverse features: computational hardness and efficient gradient-based training for ridge combinations [40.77319247558742]
We study the computational complexity of learning a target function $f_*:mathbbRdtomathbbR$ with additive structure.
We prove that a large subset of $f_*$ can be efficiently learned by gradient training of a two-layer neural network.
arXiv Detail & Related papers (2024-06-17T17:59:17Z) - Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
We study the problem of gradient descent learning of a single-index target function $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$ under isotropic Gaussian data.
We prove that a two-layer neural network optimized by an SGD-based algorithm learns $f_*$ of arbitrary link function with a sample and runtime complexity of $n asymp T asymp C(q) cdot d
arXiv Detail & Related papers (2024-06-03T17:56:58Z) - Learning Hierarchical Polynomials with Three-Layer Neural Networks [56.71223169861528]
We study the problem of learning hierarchical functions over the standard Gaussian distribution with three-layer neural networks.
For a large subclass of degree $k$s $p$, a three-layer neural network trained via layerwise gradientp descent on the square loss learns the target $h$ up to vanishing test error.
This work demonstrates the ability of three-layer neural networks to learn complex features and as a result, learn a broad class of hierarchical functions.
arXiv Detail & Related papers (2023-11-23T02:19:32Z) - Neural Networks Efficiently Learn Low-Dimensional Representations with
SGD [22.703825902761405]
We show that SGD-trained ReLU NNs can learn a single-index target of the form $y=f(langleboldsymbolu,boldsymbolxrangle) + epsilon$ by recovering the principal direction.
We also provide compress guarantees for NNs using the approximate low-rank structure produced by SGD.
arXiv Detail & Related papers (2022-09-29T15:29:10Z) - Neural Networks can Learn Representations with Gradient Descent [68.95262816363288]
In specific regimes, neural networks trained by gradient descent behave like kernel methods.
In practice, it is known that neural networks strongly outperform their associated kernels.
arXiv Detail & Related papers (2022-06-30T09:24:02Z) - Learning Over-Parametrized Two-Layer ReLU Neural Networks beyond NTK [58.5766737343951]
We consider the dynamic of descent for learning a two-layer neural network.
We show that an over-parametrized two-layer neural network can provably learn with gradient loss at most ground with Tangent samples.
arXiv Detail & Related papers (2020-07-09T07:09:28Z) - A Corrective View of Neural Networks: Representation, Memorization and
Learning [26.87238691716307]
We develop a corrective mechanism for neural network approximation.
We show that two-layer neural networks in the random features regime (RF) can memorize arbitrary labels.
We also consider three-layer neural networks and show that the corrective mechanism yields faster representation rates for smooth radial functions.
arXiv Detail & Related papers (2020-02-01T20:51:09Z) - Backward Feature Correction: How Deep Learning Performs Deep
(Hierarchical) Learning [66.05472746340142]
This paper analyzes how multi-layer neural networks can perform hierarchical learning _efficiently_ and _automatically_ by SGD on the training objective.
We establish a new principle called "backward feature correction", where the errors in the lower-level features can be automatically corrected when training together with the higher-level layers.
arXiv Detail & Related papers (2020-01-13T17:28:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.