GraphSubDetector: Time Series Subsequence Anomaly Detection via Density-Aware Adaptive Graph Neural Network
- URL: http://arxiv.org/abs/2411.17218v1
- Date: Tue, 26 Nov 2024 08:36:07 GMT
- Title: GraphSubDetector: Time Series Subsequence Anomaly Detection via Density-Aware Adaptive Graph Neural Network
- Authors: Weiqi Chen, Zhiqiang Zhou, Qingsong Wen, Liang Sun,
- Abstract summary: We present a novel approach to subsequence anomaly detection, namely GraphSubDetector.
First, it adaptively learns the appropriate subsequence length with a length selection mechanism that highlights the characteristics of both normal and anomalous patterns.
Second, we propose a density-aware adaptive graph neural network (DAGNN), which can generate further robust representations against variance of normal data for anomaly detection by message passing between subsequences.
- Score: 24.37330736887409
- License:
- Abstract: Time series subsequence anomaly detection is an important task in a large variety of real-world applications ranging from health monitoring to AIOps, and is challenging due to the following reasons: 1) how to effectively learn complex dynamics and dependencies in time series; 2) diverse and complicated anomalous subsequences as well as the inherent variance and noise of normal patterns; 3) how to determine the proper subsequence length for effective detection, which is a required parameter for many existing algorithms. In this paper, we present a novel approach to subsequence anomaly detection, namely GraphSubDetector. First, it adaptively learns the appropriate subsequence length with a length selection mechanism that highlights the characteristics of both normal and anomalous patterns. Second, we propose a density-aware adaptive graph neural network (DAGNN), which can generate further robust representations against variance of normal data for anomaly detection by message passing between subsequences. The experimental results demonstrate the effectiveness of the proposed algorithm, which achieves superior performance on multiple time series anomaly benchmark datasets compared to state-of-the-art algorithms.
Related papers
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
We introduce a novel framework called Anomaly-Denoised Autoencoders for Graph Anomaly Detection (ADA-GAD)
In the first stage, we design a learning-free anomaly-denoised augmentation method to generate graphs with reduced anomaly levels.
In the next stage, the decoders are retrained for detection on the original graph.
arXiv Detail & Related papers (2023-12-22T09:02:01Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - DEGAN: Time Series Anomaly Detection using Generative Adversarial
Network Discriminators and Density Estimation [0.0]
We have proposed an unsupervised Generative Adversarial Network (GAN)-based anomaly detection framework, DEGAN.
It relies solely on normal time series data as input to train a well-configured discriminator (D) into a standalone anomaly predictor.
arXiv Detail & Related papers (2022-10-05T04:32:12Z) - Series2Graph: Graph-based Subsequence Anomaly Detection for Time Series [22.630676187747696]
Subsequence anomaly detection in long sequences is an important problem with applications in a wide range of domains.
In this work, we propose an unsupervised method suitable for domain subsequence anomaly detection.
Our method, Series2Graph, is based on a graph representation of a novel low-dimensional agnosticity embedding of subsequences.
arXiv Detail & Related papers (2022-07-25T13:55:43Z) - Anomaly Rule Detection in Sequence Data [2.3757190901941736]
We present a new anomaly detection framework called DUOS that enables Discovery of Utility-aware Outlier Sequential rules from a set of sequences.
In this work, we incorporate both the anomalousness and utility of a group, and then introduce the concept of utility-aware outlier rule (UOSR)
arXiv Detail & Related papers (2021-11-29T23:52:31Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Multi-Scale One-Class Recurrent Neural Networks for Discrete Event
Sequence Anomaly Detection [63.825781848587376]
We propose OC4Seq, a one-class recurrent neural network for detecting anomalies in discrete event sequences.
Specifically, OC4Seq embeds the discrete event sequences into latent spaces, where anomalies can be easily detected.
arXiv Detail & Related papers (2020-08-31T04:48:22Z) - Sequential Adversarial Anomaly Detection for One-Class Event Data [18.577418448786634]
We consider the sequential anomaly detection problem in the one-class setting when only the anomalous sequences are available.
We propose an adversarial sequential detector by solving a minimax problem to find an optimal detector against the worst-case sequences from a generator.
arXiv Detail & Related papers (2019-10-21T06:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.