論文の概要: CleanVul: Automatic Function-Level Vulnerability Detection in Code Commits Using LLM Heuristics
- arxiv url: http://arxiv.org/abs/2411.17274v1
- Date: Tue, 26 Nov 2024 09:51:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:32:41.179780
- Title: CleanVul: Automatic Function-Level Vulnerability Detection in Code Commits Using LLM Heuristics
- Title(参考訳): cleanVul: LLMヒューリスティックスを用いたコードコミットにおける関数レベル脆弱性の自動検出
- Authors: Yikun Li, Ting Zhang, Ratnadira Widyasari, Yan Naing Tun, Huu Hung Nguyen, Tan Bui, Ivana Clairine Irsan, Yiran Cheng, Xiang Lan, Han Wei Ang, Frank Liauw, Martin Weyssow, Hong Jin Kang, Eng Lieh Ouh, Lwin Khin Shar, David Lo,
- Abstract要約: 本稿では,Large Language Model (LLM) を用いて,VFCからの脆弱性修正変更を自動的に識別する手法を提案する。
VulSifterは大規模な調査に適用され、GitHubで127,063のリポジトリをクロールし、5,352,105のコミットを取得しました。
LLM拡張手法を用いて11,632個の関数からなる高品質なデータセットであるCleanVulを開発した。
- 参考スコア(独自算出の注目度): 12.053158610054911
- License:
- Abstract: Accurate identification of software vulnerabilities is crucial for system integrity. Vulnerability datasets, often derived from the National Vulnerability Database (NVD) or directly from GitHub, are essential for training machine learning models to detect these security flaws. However, these datasets frequently suffer from significant noise, typically 40% to 75%, due primarily to the automatic and indiscriminate labeling of all changes in vulnerability-fixing commits (VFCs) as vulnerability-related. This misclassification occurs because not all changes in a commit aimed at fixing vulnerabilities pertain to security threats; many are routine updates like bug fixes or test improvements. This paper introduces the first methodology that uses the Large Language Model (LLM) with a heuristic enhancement to automatically identify vulnerability-fixing changes from VFCs, achieving an F1-score of 0.82. VulSifter was applied to a large-scale study, where we conducted a crawl of 127,063 repositories on GitHub, resulting in the acquisition of 5,352,105 commits. VulSifter involves utilizing an LLM to comprehend code semantics and contextual information, while applying heuristics to filter out unrelated changes. We then developed CleanVul, a high-quality dataset comprising 11,632 functions using our LLM heuristic enhancement approach, demonstrating Correctness (90.6%) comparable to established datasets such as SVEN and PrimeVul. To evaluate the CleanVul dataset, we conducted experiments focusing on fine-tuning various LLMs on CleanVul and other high-quality datasets. Evaluation results reveal that LLMs fine-tuned on CleanVul not only exhibit enhanced accuracy but also superior generalization capabilities compared to those trained on uncleaned datasets. Specifically, models trained on CleanVul and tested on PrimeVul achieve accuracy higher than those trained and tested exclusively on PrimeVul.
- Abstract(参考訳): ソフトウェア脆弱性の正確な識別は、システムの完全性に不可欠である。
脆弱性データセットは、National Vulnerability Database(NVD)やGitHubから直接派生することが多いが、これらのセキュリティ欠陥を検出するために機械学習モデルのトレーニングには不可欠である。
しかしながら、これらのデータセットは、主に脆弱性修正コミット(VFC)のすべての変更を、脆弱性関連として自動的かつ無差別にラベル付けするため、大きなノイズに悩まされることが多い。
この誤分類は、セキュリティ上の脅威に関連する脆弱性の修正を目的としたコミットのすべての変更ではないためである。
本稿では,Large Language Model (LLM) をヒューリスティックな拡張でVFCからの脆弱性修正変更を自動的に識別し,F1スコア0.82を達成した最初の手法を提案する。
VulSifterは大規模な調査に適用され、GitHubで127,063のリポジトリをクロールし、5,352,105のコミットを取得しました。
VulSifterは、LLMを使用してコード意味論と文脈情報を理解し、ヒューリスティックスを適用して無関係な変更をフィルタリングする。
LLMヒューリスティックエンハンスメントアプローチを用いて11,632の関数からなる高品質データセットであるCleanVulを開発し、SVENやPrimeVulといった既存のデータセットに匹敵する正確さ(90.6%)を実証した。
cleanVulデータセットを評価するために、CleanVulや他の高品質データセット上での様々なLLMの微調整に焦点を当てた実験を行った。
評価結果から,CleanVulで微調整したLCMは,精度が向上しただけでなく,不適切なデータセットでトレーニングしたLLMよりも優れた一般化能力を示すことがわかった。
具体的には、CleanVulでトレーニングされ、PrimeVulでテストされたモデルは、PrimeVulでのみトレーニングされ、テストされたモデルよりも精度が高い。
関連論文リスト
- Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
ドメインクラスのインクリメンタル学習は現実的だが、継続的な学習シナリオである。
これらの多様なタスクに対処するために、事前訓練されたビジョンランゲージモデル(VLM)を導入し、その強力な一般化性を実現する。
事前訓練されたVLMにエンコードされた知識は、新しいタスクに適応する際に妨げられ、固有のゼロショット能力を損なう。
既存の手法では、膨大なオーバーヘッドを必要とする余分なデータセットに知識蒸留でVLMをチューニングすることで、この問題に対処している。
我々は、事前学習した知識を保持できるDIKI(Distributed-Aware Interference-free Knowledge Integration)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-07T12:19:37Z) - Revisiting the Performance of Deep Learning-Based Vulnerability Detection on Realistic Datasets [4.385369356819613]
本稿では,脆弱性検出モデルを評価するための実世界のシナリオを表すデータセットであるReal-Vulを紹介する。
DeepWukong、LineVul、ReVeal、IVDetectの評価では、パフォーマンスが大幅に低下し、精度は95パーセントまで低下し、F1スコアは91ポイントまで低下した。
オーバーフィッティングは重要な問題として認識され、改善手法が提案され、パフォーマンスが最大30%向上する可能性がある。
論文 参考訳(メタデータ) (2024-07-03T13:34:30Z) - Security Vulnerability Detection with Multitask Self-Instructed Fine-Tuning of Large Language Models [8.167614500821223]
脆弱性検出のためのMSIVD, マルチタスクによる自己指示型微調整を, チェーン・オブ・シント・プロンプトとLDMによる自己指示にインスパイアした。
実験の結果,MSIVDは高い性能を示し,LineVul(LLMベースの脆弱性検出ベースライン)はBigVulデータセットでは0.92点,PreciseBugsデータセットでは0.48点であった。
論文 参考訳(メタデータ) (2024-06-09T19:18:05Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
異なるタスクシナリオのモデルアライメントを改善するために,不確実性認識学習(UAL)を提案する。
トレーニングのラベルの平滑化値を個々のサンプルの不確実性に応じて適応的に設定する。
広く使われているベンチマーク実験では、我々のUALは標準教師あり微調整よりも著しく優れています。
論文 参考訳(メタデータ) (2024-06-07T11:37:45Z) - Vulnerability Detection with Code Language Models: How Far Are We? [40.455600722638906]
PrimeVulは、脆弱性検出のためのコードLMのトレーニングと評価のための新しいデータセットである。
これは、人間の検証されたベンチマークに匹敵するラベルの精度を達成する、新しいデータラベリング技術を含んでいる。
また、厳密なデータ重複解消戦略と時系列データ分割戦略を実装して、データの漏洩問題を軽減している。
論文 参考訳(メタデータ) (2024-03-27T14:34:29Z) - Data-Free Hard-Label Robustness Stealing Attack [67.41281050467889]
本稿では,Data-Free Hard-Label Robustness Stealing(DFHL-RS)攻撃について紹介する。
ターゲットモデルのハードラベルをクエリするだけで、モデル精度とロバスト性の両方を盗むことができる。
本手法は,AutoAttackに対して77.86%,頑健な39.51%の精度を実現する。
論文 参考訳(メタデータ) (2023-12-10T16:14:02Z) - Understanding the Effectiveness of Large Language Models in Detecting Security Vulnerabilities [12.82645410161464]
5つの異なるセキュリティデータセットから5,000のコードサンプルに対して、16の事前学習された大規模言語モデルの有効性を評価する。
全体として、LSMは脆弱性の検出において最も穏やかな効果を示し、データセットの平均精度は62.8%、F1スコアは0.71である。
ステップバイステップ分析を含む高度なプロンプト戦略は、F1スコア(平均0.18まで)で実世界のデータセット上でのLLMのパフォーマンスを著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-11-16T13:17:20Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。