2D Matryoshka Training for Information Retrieval
- URL: http://arxiv.org/abs/2411.17299v1
- Date: Tue, 26 Nov 2024 10:47:35 GMT
- Title: 2D Matryoshka Training for Information Retrieval
- Authors: Shuai Wang, Shengyao Zhuang, Bevan Koopman, Guido Zuccon,
- Abstract summary: 2D Matryoshka Training is an embedding representation training approach designed to train an encoder model simultaneously across various layer-dimension setups.
We implement and evaluate both versions of 2D Matryoshka Training on STS tasks and extend our analysis to retrieval tasks.
- Score: 32.44832240958393
- License:
- Abstract: 2D Matryoshka Training is an advanced embedding representation training approach designed to train an encoder model simultaneously across various layer-dimension setups. This method has demonstrated higher effectiveness in Semantic Text Similarity (STS) tasks over traditional training approaches when using sub-layers for embeddings. Despite its success, discrepancies exist between two published implementations, leading to varied comparative results with baseline models. In this reproducibility study, we implement and evaluate both versions of 2D Matryoshka Training on STS tasks and extend our analysis to retrieval tasks. Our findings indicate that while both versions achieve higher effectiveness than traditional Matryoshka training on sub-dimensions, and traditional full-sized model training approaches, they do not outperform models trained separately on specific sub-layer and sub-dimension setups. Moreover, these results generalize well to retrieval tasks, both in supervised (MSMARCO) and zero-shot (BEIR) settings. Further explorations of different loss computations reveals more suitable implementations for retrieval tasks, such as incorporating full-dimension loss and training on a broader range of target dimensions. Conversely, some intuitive approaches, such as fixing document encoders to full model outputs, do not yield improvements. Our reproduction code is available at https://github.com/ielab/2DMSE-Reproduce.
Related papers
- Improving General Text Embedding Model: Tackling Task Conflict and Data Imbalance through Model Merging [33.23758947497205]
Advanced embedding models are typically developed using large-scale multi-task data and joint training across multiple tasks.
To overcome these challenges, we explore model merging-a technique that combines independently trained models to mitigate gradient conflicts and balance data distribution.
We introduce a novel method, Self Positioning, which efficiently searches for optimal model combinations within the space of task vectors using gradient descent.
arXiv Detail & Related papers (2024-10-19T08:39:21Z) - Starbucks: Improved Training for 2D Matryoshka Embeddings [32.44832240958393]
We propose Starbucks, a new training strategy for Matryoshka-like embedding models.
For the fine-tuning phase, we provide a fixed list of layer-dimension pairs, from small size to large sizes.
We also introduce a new pre-training strategy, which applies masked autoencoder language modelling to sub-layers and sub-dimensions.
arXiv Detail & Related papers (2024-10-17T05:33:50Z) - MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining [73.81862342673894]
Foundation models have reshaped the landscape of Remote Sensing (RS) by enhancing various image interpretation tasks.
transferring the pretrained models to downstream tasks may encounter task discrepancy due to their formulation of pretraining as image classification or object discrimination tasks.
We conduct multi-task supervised pretraining on the SAMRS dataset, encompassing semantic segmentation, instance segmentation, and rotated object detection.
Our models are finetuned on various RS downstream tasks, such as scene classification, horizontal and rotated object detection, semantic segmentation, and change detection.
arXiv Detail & Related papers (2024-03-20T09:17:22Z) - Enhancing Cross-Category Learning in Recommendation Systems with
Multi-Layer Embedding Training [2.4862527485819186]
Multi-layer embeddings training (MLET) trains embeddings using factorization of the embedding layer, with an inner dimension higher than the target embedding dimension.
MLET consistently produces better models, especially for rare items.
At constant model quality, MLET allows embedding dimension, and model size, reduction by up to 16x, and 5.8x on average.
arXiv Detail & Related papers (2023-09-27T09:32:10Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - CoMAE: Single Model Hybrid Pre-training on Small-Scale RGB-D Datasets [50.6643933702394]
We present a single-model self-supervised hybrid pre-training framework for RGB and depth modalities, termed as CoMAE.
Our CoMAE presents a curriculum learning strategy to unify the two popular self-supervised representation learning algorithms: contrastive learning and masked image modeling.
arXiv Detail & Related papers (2023-02-13T07:09:45Z) - ZhichunRoad at Amazon KDD Cup 2022: MultiTask Pre-Training for
E-Commerce Product Search [4.220439000486713]
We propose a robust multilingual model to improve the quality of search results.
In pre-training stage, we adopt mlm task, classification task and contrastive learning task.
In fine-tuning stage, we use confident learning, exponential moving average method (EMA), adversarial training (FGM) and regularized dropout strategy (R-Drop)
arXiv Detail & Related papers (2023-01-31T07:31:34Z) - MASTER: Multi-task Pre-trained Bottlenecked Masked Autoencoders are
Better Dense Retrievers [140.0479479231558]
In this work, we aim to unify a variety of pre-training tasks into a multi-task pre-trained model, namely MASTER.
MASTER utilizes a shared-encoder multi-decoder architecture that can construct a representation bottleneck to compress the abundant semantic information across tasks into dense vectors.
arXiv Detail & Related papers (2022-12-15T13:57:07Z) - Masked Autoencoders As The Unified Learners For Pre-Trained Sentence
Representation [77.47617360812023]
We extend the recently proposed MAE style pre-training strategy, RetroMAE, to support a wide variety of sentence representation tasks.
The first stage performs RetroMAE over generic corpora, like Wikipedia, BookCorpus, etc., from which the base model is learned.
The second stage takes place on domain-specific data, e.g., MS MARCO and NLI, where the base model is continuingly trained based on RetroMAE and contrastive learning.
arXiv Detail & Related papers (2022-07-30T14:34:55Z) - The Two Dimensions of Worst-case Training and the Integrated Effect for
Out-of-domain Generalization [95.34898583368154]
We propose a new, simple yet effective, generalization to train machine learning models.
We name our method W2D following the concept of "Worst-case along Two Dimensions"
arXiv Detail & Related papers (2022-04-09T04:14:55Z) - Training with Multi-Layer Embeddings for Model Reduction [0.9046327456472286]
We introduce a multi-layer embedding training architecture that trains embeddings via a sequence of linear layers.
We show that it allows reducing d by 4-8X, with a corresponding improvement in memory footprint, at given model accuracy.
arXiv Detail & Related papers (2020-06-10T02:47:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.