Meaningless is better: hashing bias-inducing words in LLM prompts improves performance in logical reasoning and statistical learning
- URL: http://arxiv.org/abs/2411.17304v1
- Date: Tue, 26 Nov 2024 10:52:08 GMT
- Title: Meaningless is better: hashing bias-inducing words in LLM prompts improves performance in logical reasoning and statistical learning
- Authors: Milena Chadimová, Eduard Jurášek, Tomáš Kliegr,
- Abstract summary: "Hashing" involves masking potentially bias-inducing words in large language models with meaningless identifiers to reduce cognitive biases.
The method was tested across three sets of experiments involving a total of 490 prompts.
Overall, the method was shown to improve bias reduction and incorporation of external knowledge.
- Score: 0.0
- License:
- Abstract: This paper introduces a novel method, referred to as "hashing", which involves masking potentially bias-inducing words in large language models (LLMs) with hash-like meaningless identifiers to reduce cognitive biases and reliance on external knowledge. The method was tested across three sets of experiments involving a total of 490 prompts. Statistical analysis using chi-square tests showed significant improvements in all tested scenarios, which covered LLama, ChatGPT, Copilot, Gemini and Mixtral models. In the first experiment, hashing decreased the fallacy rate in a modified version of the "Linda" problem aimed at evaluating susceptibility to cognitive biases. In the second experiment, it improved LLM results on the frequent itemset extraction task. In the third experiment, we found hashing is also effective when the Linda problem is presented in a tabular format rather than text, indicating that the technique works across various input representations. Overall, the method was shown to improve bias reduction and incorporation of external knowledge. Despite bias reduction, hallucination rates were inconsistently reduced across types of LLM models. These findings suggest that masking bias-inducing terms can improve LLM performance, although its effectiveness is model- and task-dependent.
Related papers
- Can Many-Shot In-Context Learning Help LLMs as Evaluators? A Preliminary Empirical Study [14.906150451947443]
We study two many-shot ICL prompts for helping evaluators to mitigate the potential biases in Large Language Models (LLMs)
Based on the designed prompts, we investigate the impact of scaling the number of in-context examples on the consistency and quality of the evaluation results.
Experimental results show that advanced LLMs, such as GPT-4o, perform better in the many-shot regime than in the zero-shot regime.
arXiv Detail & Related papers (2024-06-17T15:11:58Z) - Detecting Hallucinations in Large Language Model Generation: A Token Probability Approach [0.0]
Large Language Models (LLMs) produce inaccurate outputs, also known as hallucinations.
This paper introduces a supervised learning approach employing only four numerical features derived from tokens and vocabulary probabilities obtained from other evaluators.
The method yields promising results, surpassing state-of-the-art outcomes in multiple tasks across three different benchmarks.
arXiv Detail & Related papers (2024-05-30T03:00:47Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z) - Likelihood-based Mitigation of Evaluation Bias in Large Language Models [37.07596663793111]
Large Language Models (LLMs) are widely used to evaluate natural language generation tasks as automated metrics.
It is possible that there might be a likelihood bias if LLMs are used for evaluation.
arXiv Detail & Related papers (2024-02-25T04:52:02Z) - Pride and Prejudice: LLM Amplifies Self-Bias in Self-Refinement [75.7148545929689]
Large language models (LLMs) improve their performance through self-feedback on certain tasks while degrade on others.
We formally define LLM's self-bias - the tendency to favor its own generation.
We analyze six LLMs on translation, constrained text generation, and mathematical reasoning tasks.
arXiv Detail & Related papers (2024-02-18T03:10:39Z) - Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus [99.33091772494751]
Large Language Models (LLMs) have gained significant popularity for their impressive performance across diverse fields.
LLMs are prone to hallucinate untruthful or nonsensical outputs that fail to meet user expectations.
We propose a novel reference-free, uncertainty-based method for detecting hallucinations in LLMs.
arXiv Detail & Related papers (2023-11-22T08:39:17Z) - Improving Factual Consistency of Text Summarization by Adversarially
Decoupling Comprehension and Embellishment Abilities of LLMs [67.56087611675606]
Large language models (LLMs) generate summaries that are factually inconsistent with original articles.
These hallucinations are challenging to detect through traditional methods.
We propose an adversarially DEcoupling method to disentangle the abilities of LLMs (DECENT)
arXiv Detail & Related papers (2023-10-30T08:40:16Z) - A New Benchmark and Reverse Validation Method for Passage-level
Hallucination Detection [63.56136319976554]
Large Language Models (LLMs) generate hallucinations, which can cause significant damage when deployed for mission-critical tasks.
We propose a self-check approach based on reverse validation to detect factual errors automatically in a zero-resource fashion.
We empirically evaluate our method and existing zero-resource detection methods on two datasets.
arXiv Detail & Related papers (2023-10-10T10:14:59Z) - SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for
Generative Large Language Models [55.60306377044225]
"SelfCheckGPT" is a simple sampling-based approach to fact-check the responses of black-box models.
We investigate this approach by using GPT-3 to generate passages about individuals from the WikiBio dataset.
arXiv Detail & Related papers (2023-03-15T19:31:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.