in-Car Biometrics (iCarB) Datasets for Driver Recognition: Face, Fingerprint, and Voice
- URL: http://arxiv.org/abs/2411.17305v1
- Date: Tue, 26 Nov 2024 10:52:15 GMT
- Title: in-Car Biometrics (iCarB) Datasets for Driver Recognition: Face, Fingerprint, and Voice
- Authors: Vedrana Krivokuca Hahn, Jeremy Maceiras, Alain Komaty, Philip Abbet, Sebastien Marcel,
- Abstract summary: We present three biometric datasets (iCarB-Face, iCarB-Fingerprint, iCarB-Voice) containing face videos, fingerprint images, and voice samples.
The data was acquired using a near-infrared camera, two fingerprint scanners, and two microphones, while the volunteers were seated in the driver's seat of the car.
- Score: 1.3980986259786223
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present three biometric datasets (iCarB-Face, iCarB-Fingerprint, iCarB-Voice) containing face videos, fingerprint images, and voice samples, collected inside a car from 200 consenting volunteers. The data was acquired using a near-infrared camera, two fingerprint scanners, and two microphones, while the volunteers were seated in the driver's seat of the car. The data collection took place while the car was parked both indoors and outdoors, and different "noises" were added to simulate non-ideal biometric data capture that may be encountered in real-life driver recognition. Although the datasets are specifically tailored to in-vehicle biometric recognition, their utility is not limited to the automotive environment. The iCarB datasets, which are available to the research community, can be used to: (i) evaluate and benchmark face, fingerprint, and voice recognition systems (we provide several evaluation protocols); (ii) create multimodal pseudo-identities, to train/test multimodal fusion algorithms; (iii) create Presentation Attacks from the biometric data, to evaluate Presentation Attack Detection algorithms; (iv) investigate demographic and environmental biases in biometric systems, using the provided metadata. To the best of our knowledge, ours are the largest and most diverse publicly available in-vehicle biometric datasets. Most other datasets contain only one biometric modality (usually face), while our datasets consist of three modalities, all acquired in the same automotive environment. Moreover, iCarB-Fingerprint seems to be the first publicly available in-vehicle fingerprint dataset. Finally, the iCarB datasets boast a rare level of demographic diversity among the 200 data subjects, including a 50/50 gender split, skin colours across the whole Fitzpatrick-scale spectrum, and a wide age range (18-60+). So, these datasets will be valuable for advancing biometrics research.
Related papers
- UL-DD: A Multimodal Drowsiness Dataset Using Video, Biometric Signals, and Behavioral Data [11.879350713051698]
This dataset includes 3D facial video using a depth camera, IR camera footage, posterior videos, and biometric signals such as heart rate, electrodermal activity, blood oxygen saturation, skin temperature, and accelerometer data.<n>Drowsiness levels were self-reported every four minutes using the Karolinska Sleepiness Scale (KSS)<n>This study aims to create a comprehensive multimodal dataset of driver drowsiness that captures a wider range of physiological, behavioral, and driving-related signals.
arXiv Detail & Related papers (2025-07-16T21:44:25Z) - Transfer Your Perspective: Controllable 3D Generation from Any Viewpoint in a Driving Scene [56.73568220959019]
Collaborative autonomous driving (CAV) seems like a promising direction, but collecting data for development is non-trivial.
We introduce a novel surrogate to the rescue, which is to generate realistic perception from different viewpoints in a driving scene.
We present the very first solution, using a combination of simulated collaborative data and real ego-car data.
arXiv Detail & Related papers (2025-02-10T17:07:53Z) - VBR: A Vision Benchmark in Rome [1.71787484850503]
This paper presents a vision and perception research dataset collected in Rome, featuring RGB data, 3D point clouds, IMU, and GPS data.
We introduce a new benchmark targeting visual odometry and SLAM, to advance the research in autonomous robotics and computer vision.
arXiv Detail & Related papers (2024-04-17T12:34:49Z) - G-MEMP: Gaze-Enhanced Multimodal Ego-Motion Prediction in Driving [71.9040410238973]
We focus on inferring the ego trajectory of a driver's vehicle using their gaze data.
Next, we develop G-MEMP, a novel multimodal ego-trajectory prediction network that combines GPS and video input with gaze data.
The results show that G-MEMP significantly outperforms state-of-the-art methods in both benchmarks.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - OpenDriver: An Open-Road Driver State Detection Dataset [13.756530418314227]
This paper develops a large-scale multimodal driving dataset, OpenDriver, for driver state detection.
The OpenDriver encompasses a total of 3,278 driving trips, with a signal collection duration spanning approximately 4,600 hours.
arXiv Detail & Related papers (2023-04-09T10:08:38Z) - Multi-Channel Time-Series Person and Soft-Biometric Identification [65.83256210066787]
This work investigates person and soft-biometrics identification from recordings of humans performing different activities using deep architectures.
We evaluate the method on four datasets of multi-channel time-series human activity recognition (HAR)
Soft-biometric based attribute representation shows promising results and emphasis the necessity of larger datasets.
arXiv Detail & Related papers (2023-04-04T07:24:51Z) - SUPS: A Simulated Underground Parking Scenario Dataset for Autonomous
Driving [41.221988979184665]
SUPS is a simulated dataset for underground automatic parking.
It supports multiple tasks with multiple sensors and multiple semantic labels aligned with successive images.
We also evaluate the state-of-the-art SLAM algorithms and perception models on our dataset.
arXiv Detail & Related papers (2023-02-25T02:59:12Z) - Argoverse 2: Next Generation Datasets for Self-Driving Perception and
Forecasting [64.7364925689825]
Argoverse 2 (AV2) is a collection of three datasets for perception and forecasting research in the self-driving domain.
The Lidar dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose.
The Motion Forecasting dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene.
arXiv Detail & Related papers (2023-01-02T00:36:22Z) - Mobile Behavioral Biometrics for Passive Authentication [65.94403066225384]
This work carries out a comparative analysis of unimodal and multimodal behavioral biometric traits.
Experiments are performed over HuMIdb, one of the largest and most comprehensive freely available mobile user interaction databases.
In our experiments, the most discriminative background sensor is the magnetometer, whereas among touch tasks the best results are achieved with keystroke.
arXiv Detail & Related papers (2022-03-14T17:05:59Z) - Multilingual Audio-Visual Smartphone Dataset And Evaluation [35.82191448400655]
We present an audio-visual smartphone dataset captured in five different recent smartphones.
Three different languages are acquired in this dataset to include the problem of language dependency of the speaker recognition systems.
We also report the performance of the bench-marked biometric verification systems on our dataset.
arXiv Detail & Related papers (2021-09-09T09:52:37Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
We introduce the ONCE dataset for 3D object detection in the autonomous driving scenario.
The data is selected from 144 driving hours, which is 20x longer than the largest 3D autonomous driving dataset available.
We reproduce and evaluate a variety of self-supervised and semi-supervised methods on the ONCE dataset.
arXiv Detail & Related papers (2021-06-21T12:28:08Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z) - End-to-end User Recognition using Touchscreen Biometrics [11.394909061094463]
The goal was to create an end-to-end system that can transparently identify users using raw data from mobile devices.
In the proposed system data from the touchscreen goes directly to the input of a deep neural network, which is able to decide on the identity of the user.
arXiv Detail & Related papers (2020-06-09T16:38:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.